Фторирование органических соединений, сопровождающееся молекулярными перегруппировками

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Обзор литературы посвящен электрофильному и окислительному фторированию органических соединений, сопровождающемуся молекулярными перегруппировками. Особое внимание уделено механизму реакций и проблеме селективности.

Полный текст

Доступ закрыт

Об авторах

Г. И. Бородкин

Новосибирский институт органической химии им. Н.Н. Ворожцова Сибирского отделения Российской академии наук

Автор, ответственный за переписку.
Email: gibor@nioch.nsc.ru
Россия, просп. Акад. Лаврентьева, 9, Новосибирск, 630090

Список литературы

  1. Zhou Y., Wang J., Gu Z., Wang S., Zhu W., Aceña J.L., Soloshonok V.F., Izawa K., Liu H. Chem. Rev. 2016, 116, 422–518. doi: 10.1021/acs.chemrev.5b00392
  2. Lowe P.T., O’Hagan D. Chem. Soc. Rev. 2023, 52, 248–276. doi: 10.1039/d2cs00762b
  3. Tiz D.B., Bagnoli L., Rosati O., Marini F., Sancineto L., Santi C. Molecules. 2022, 27, 1643–1666. doi: 10.3390/molecules27051643
  4. Mei H., Han J., White S., Graham D.J., Izawa K., Sato T., Fustero S., Meanwell N.A., Soloshonok V.A. Chem. Eur. J. 2020, 26, 11349–11390. doi: 10.1002/chem.202000617
  5. Dhiman P., Arora N., Thanikachalam P.V., Monga V. Bioorg. Chem. 2019, 92, 103291. doi: 10.1016/j.bioorg.2019.103291
  6. Wang J., Sánchez-Roselló M., Aceña J.L., del Pozo C., Sorochinsky A.E., Fustero S., Soloshonok V.A., Liu H. Chem. Rev. 2014, 114, 2432–2506. doi: 10.1021/cr4002879
  7. Zaikin P.A., Borodkin G.I. In: Late-Stage Fluorination of Bioactive Molecules and Biologically-Relevant Substrates. Ed. A. Postigo. Amsterdam: Elsevier. 2019, 105–135. doi: 10.1016/B978-0-12-812958-6.00003-3
  8. Mykhailiuk P.K. Chem. Rev. 2021, 121, 1670–1715. D doi: 10.1021/acs.chemrev.0c01015
  9. Jeschke P. Eur. J. Org. Chem. 2022, e202101513. doi: 10.1002/ejoc.202101513
  10. Jeanmart S., Edmunds A.J.F., Lamberth C., Pouliot M. Bioorg. Med. Chem. 2016, 24, 317–341. doi: 10.1016/j.bmc.2015.12.014
  11. Li F., Wang M., Liu S., Zhao Q. Chem. Sci., 2022, 13, 2184–2201. doi: 10.1039/d1sc06586f
  12. Bremer M., Kirsch P., Klasen-Memmer M., Tarumi K. Angew. Chem. Int. Ed. 2013, 52, 8880–8896. doi: 10.1002/anie.201300903
  13. Squeo B.M., Gregoriou V.G., Avgeropoulos A., Baysec S., Allardd S., Scherf U., Chochos C.L. Progress Polymer Sci. 2017, 71, 26–52. doi: 10.1016/j.progpolymsci.2017.02.003
  14. Gillis E.P., Eastmann K.J., Hill M.D., Donnelly D.J., Meanwell N.A. J. Med. Chem. 2015, 58, 8315–8359. doi: 10.1021/acs.jmedchem.5b00258
  15. Бородкин Г.И., Шубин В.Г. ЖОрХ, 2021, 57, 1209–1242 [Borodkin G.I., Shubin V.G. Russ. J. Org. Chem. 2021, 57, 1369–1397]. doi: 10.1134/S1070428021090013
  16. Borodkin G.I., Shubin V.G. Chem. Heterocycl. Compd. 2022, 58, 84–96. doi: 10.1007/s10593-022-03060-3
  17. Ramsden C.A. Arkivok 2014 (i), 109–126. doi: 10.3998/ark.5550190.p008.436
  18. Бородкин Г.И., Шубин В.Г. Усп. хим., 2010, 79, 299–324. [Borodkin G.I., Shubin V.G. Russ. Chem. Rev. 2010, 79, 259–283]. doi: 10.1070/RC2010v079n04ABEH004091
  19. Fluorination, Synthetic Organofluorine Chemistry. Eds. J. Hu, T. Umemoto, Springer Nature Singapore Pte Ltd. 2020, 429, 446, 451, 529, 558, 566. doi: 10.1007/978-981-10-3896-9
  20. Бородкин Г.И. Усп. хим., 2023, 92, RCR5091 [Borodkin G.I. Russ. Chem. Rev. 2023, 92, RCR5091]. doi: 10.59761/RCR5091
  21. Liang T., Neumann C.N., Ritter T. Angew. Chem. Int. Ed. 2013, 52, 8214–8264. doi: 10.1002/anie.201206566
  22. Rozatian N., Hodgson D.R.W. Chem. Commun., 2021, 57, 683–712. doi: 10.1039/d0cc06339h
  23. Sakthivel K., Subhiksha J., Raju A., Kumar R., Dohi T., Singha F.V. Arkivoc, 2022, 138–165. doi: 10.24820/ark.5550190.p011.996
  24. Haufe G. Chem. Rec. 2023, 23, e202300140. doi: 10.1002/tcr.202300140
  25. Borodkin G.I., Zaikin P.A., Shubin V.G. Tetrahedron Lett. 2006, 47, 2639–2642. doi: 10.1016/j.tetlet.2006.02.016
  26. Бородкин Г.И., Заикин П.А., Шакиров М.М., Шубин В.Г. ЖОрХ, 2007, 43, 1460−1468 [Borodkin G.I., Zaikin P.A., Shakirov M.M., Shubin V.G. Russ. J. Org. Chem. 2007, 43, 1451−1459.] doi: 10.1134/S1070428007100077
  27. Bykova T., Al-Maharik N., Slawin A.M.Z., O’Hagan D. J. Fluor. Chem. 2015, 179, 188–192. doi: 10.1016/j.jfluchem.2015.08.003
  28. Kitamura T., Yoshida K., Mizuno S., Miyake A., Oyamada J. J. Org. Chem. 2018, 83, 14853–14860. doi: 10.1021/acs.joc.8b02473
  29. Ilchenko N.O., Tasch B.O.A., Szabó K.J. Angew. Chem. Int. Ed. 2014, 53, 12897–12901. doi: 10.1002/anie.201408812
  30. Banik S.M., Medley J.W., Jacobsen E.N. Science. 2016, 353, 51–54. doi: 10.1126/science.aaf8078
  31. Zhou B., Haj M.K., Jacobsen E.N., Houk K.N., Xue X.-S. J. Am. Chem. Soc. 2018, 140, 15206−15218. doi: 10.1021/jacs.8b05935
  32. Scheidt F., Neufeld J., Schäfer M., Thiehoff C., Gilmour R. Org. Lett. 2018, 20, 8073−8076. doi: 10.1021/acs.orglett.8b03794
  33. Kitamura T., Muta K., Oyamada J. J. Org. Chem. 2015, 80, 10431−10436. doi: 10.1021/acs.joc.5b01929
  34. Kitamura T., Kitamura D., Oyamada J., Higashi M., Kishikawa Y. Adv. Synth. Catal. 2023, 365, 2744–2750. doi: 10.1002/adsc.202300265
  35. Lv W.-X., Li Q., Li J.-L., Li Z., Lin E., Tan D.-H., Cai Y.-H., Fan W.-X., Wang H. Angew. Chem. Int. Ed. 2018, 57, 16544–16548. doi: 10.1002/anie.201810204
  36. Zhao Z., Racicot L., Murphy G.K. Angew. Chem. Int. Ed. 2017, 56, 11620–11623. doi: 10.1002/anie.201706798
  37. Scheidt F., Schäfer M., Sarie J.C., Daniliuc C.G., Molloy J.J., Gilmour R. Angew. Chem. 2018, 130, 16431–16435. doi: 10.1002/ange.201810328
  38. Sharma H.A., Mennie K.M., Kwan E.E., Jacobsen E.N. J. Am. Chem. Soc. 2020, 142, 16090– 16096.
  39. Hoogesteger R.H., Murdoch N., Cordes D.B., Johns-ton C.P. Angew. Chem. Int. Ed. 2023, 62, e202308048. doi: 10.1002/anie.202308048
  40. Wang Q., Biosca M., Himo F., Szabó K.J. Angew. Chem. Int. Ed. 2021, 60, 26327–26331. doi: 10.1002/anie.202109461
  41. Scheidt F., Neufeld J., Schäfer M., Thiehoff C., Gil-mour R. Org. Lett. 2018, 20, 8073–8076. doi: 10.1021/acs.orglett.8b03794
  42. Lin P.-P., Huang L.-L., Feng S.-X., Yang S., Wang H., Huang Z.-S., Li Q. Org. Lett. 2021, 23, 3088–3093. doi: 10.1021/acs.orglett.1c00767
  43. Brunner C., Andries-Ulmer A., Kiefl G.M., Gulder T. Eur. J. Org. Chem. 2018, 2615–2621. doi: 10.1002/ejoc.201800129
  44. Chai H., Zhen X., Wang X., Qi L., Qin Y., Xue J., Xu Z., Zhang H., Zhu W. ACS Omega, 2022, 7, 19988–19996.doi: 10.1021/acsomega.2c01791
  45. Neufeld J., Stünkel T., Mück-Lichtenfeld C., Daniliuc C.G., Gilmour R. Angew. Chem. Int. Ed. 2021, 60, 13647–13651. doi: 10.1002/anie.202102222
  46. Ulmer A., Brunner C., Arnold A.M., Pöthig A., Gulder T. Chem. Eur. J. 2016, 22, 3660–3664. doi: 10.1002/chem.201504749
  47. Yan T., Zhou B., Xue X.-S., Cheng J.-P. J. Org. Chem. 2016, 81, 9006−9011. doi: 10.1021/acs.joc.6b01642
  48. Geary G.C., Hope E.G., Stuart A.M. Angew. Chem. Int. Ed. 2015, 54, 14911–14914. doi: 10.1002/anie.201507790
  49. Ren J., Du F.-H., Jia M.-C., Hu Z.-N., Chen Z., Zhang C. Angew. Chem. Int. Ed. 2021, 60, 24171–24178. doi: 10.1002/anie.202108589
  50. Komatsuda M., Suto A., Kondo H., Takada H., Kato K., Saito B., Yamaguchi J. Chem. Sci., 2022, 13, 665–670. doi: 10.1039/d1sc06273e
  51. Lin T.-S., Tsai W.-T., Liang P.-H. Tetrahedron 2016, 72, 5571–5577. doi: 10.1016/j.tet.2016.06.075
  52. Xu Z.-F., Dai H., Shan L., Li C.-Y. Org. Lett. 2018, 20, 1054−1057. doi: 10.1021/acs.orglett.7b04014
  53. Levin M.A., Ovian J.M., Read J.A., Sigman M.S., Jacobsen E.N. J. Am. Chem. Soc. 2020, 142, 14831–14837. doi: 10.1021/jacs.0c07043
  54. Li C., Liao Y., Tan X., Liu X., Liu P., Lv W.-X., Wang H. Sci. China Chem., 2021, 64, 999–1003. doi: 10.1007/s11426-021-9965-9
  55. Ning Y., Sivaguru P., Zanoni G., Anderson E.A., Bi X. Chem. 2020, 6, 486–496. doi: 10.1016/j.chempr.2019.12.004
  56. Pang J.H., Chiba S. Sci. China Chem. 2020, 63, 1019–1020. doi: 10.1007/s11426-020-9773-3
  57. Li H., Reddy B.R.P., Bi X. Org. Lett. 2019, 21, 9358–9362. doi: 10.1021/acs.orglett.9b03593
  58. Inoue T., Nakabo S., Hara S. J. Fluor. Chem. 2016, 184, 22–27. doi: 10.1016/j.jfluchem.2016.02.002
  59. Yang B., Chansaenpak K., Wu H., Zhu L., Wang M., Li Z., Lu H. Chem. Commun., 2017, 53, 3497–3500. doi: 10.1039/c7cc01393k
  60. Ren S., Feng C., Loh T.-P. Org. Biomol. Chem., 2015, 13, 5105–5109. doi: 10.1039/c5ob00632e
  61. Kim Y., Kim D.Y. Asian J. Org. Chem. 2019, 8, 679–682. doi: 10.1002/ajoc.201900029
  62. Fan X., Wang Q., Wei Y., Shi M. Chem. Commun., 2018, 54, 10503–10506. doi: 10.1039/c8cc05634j
  63. Garia A., Kumar S., Jain N. Asian J. Org. Chem. 2022, 11, e202200164. doi: 10.1002/ajoc.202200164
  64. Liu A., Ni C., Xie Q., Hu J. Angew. Chem. Int. Ed. 2022, 61, e202115467. doi: 10.1002/anie.202115467
  65. Romanov-Michailidis F., Guénée L., Alexakis A. Angew. Chem. Int. Ed. 2013, 52, 9266–9270. doi: 10.1002/anie.201303527
  66. Romanov-Michailidis F., Romanova-Michaelides M., Pupier M., Alexakis A. Chem. Eur. J. 2015, 21, 5561–5583. doi: 10.1002/chem.201406133
  67. Zhao P., Wang W., Gulder T. Org. Lett. 2023, 25, 6560−6565. doi: 10.1021/acs.orglett.3c02384
  68. Feng S.-X., Yang S., Tu F.-H., Lin P.-P., Huang L.-L., Wang H., Huang Z.-S., Li Q. J. Org. Chem. 2021, 86, 6800−6812. doi: 10.1021/acs.joc.1c00578
  69. Chen Z.-M., Yang B.-M., Chen Z.-H., Zhang Q.-W., Wang M., Tu Y.-Q. Chem. Eur. J. 2012, 18, 12950–12954. doi: 10.1002/chem.201202444
  70. Das B.K., Tokunaga E., Harada K., Sumii Y., Shibata N. Org. Chem. Front., 2017, 4, 1726–1730. doi: 10.1039/c7qo00234c
  71. Liao L., An R., Li H., Xu Y., Wu J.-J., Zhao X. Angew. Chem. Int. Ed. 2020, 59, 11010–11019. doi: 10.1002/anie.202003897
  72. Alcaide B., Almendros P., Cembellıґn S., Martíґnez del Campo T., Muñoz A . Chem. Commun. 2016, 52, 6813–6816. doi: 10.1039/c6cc02012g
  73. Lu Y., Kasahara A., Hyodo T., Ohara K., Yamaguchi K., Otani Y., Ohwada T. Org. Lett. 2023, 25, 3482–3486. doi: 10.1021/acs.orglett.3c01063
  74. Thornbury R.T., Saini V., Fernandes T.A., Santiago C.B., Talbot E.P.A., Sigman M.S., McKenna J.M., Toste F.D. Chem. Sci. 2017, 8, 2890–2897. doi: 10.1039/c6sc05102b
  75. Cao J., Wu H., Wang Q., Zhu J. Nature Chem. 2021, 13, 671–676. doi: 10.1038/s41557-021-00698-ydoi.org/10.1038/s41557-021-00698oi.org/10.1038/s41557-
  76. Gong J., Wang Q., Zhu J. Angew. Chem. Int. Ed. 2022, 61, e202211470. doi: 10.1002/anie.202211470
  77. Yang G., Wu H., Gallarati S., Corminboeuf C., Wang Q., Zhu J. J. Am. Chem. Soc. 2022, 144, 14047−14052. doi: 10.1021/jacs.2c06578
  78. Mishra K., Singh J.B., Gupta T., Singh R.M. Org. Chem. Front. 2017, 4, 1794–1798. doi: 10.1039/c7qo00346c
  79. De Haro T., Nevado C. Chem. Commun., 2011, 47, 248–249. doi: 10.1039/c002679d
  80. Yang L., Ma Y., Song F., You J. Chem. Commun., 2014, 50, 3024–3026. doi: 10.1039/c3cc49851d
  81. Liu N., Tian Q.-P., Yang Q., Yang S.-D. Synlett 2016, 27, 2621–2625. doi: 10.1055/s-0035-1562537; Art ID: st-2016-w0347-l
  82. Bui T.T., Hong W.P., Kim H.-K. J. Fluor. Chem. 2021, 247, 109794. doi: 10.1016/j.jfluchem.2021.109794
  83. Morcillo S.P. Angew. Chem. Int. Ed. 2019, 58, 14044–14054. doi: 10.1002/anie.201905218
  84. Бородкин Г.И., Шубин В.Г. Усп. хим. 2019, 89, 160–203 [Borodkin G.I., Shubin V.G. Russ. Chem. Rev., 2019, 88, 160–203.] doi: 10.1070/RCR4833?locatt=label:RUSSIAN
  85. Morcillo S.P., Dauncey E.M., Kim J.H., Douglas J.J., Sheikh N.S., Leonori D. Angew. Chem. Int. Ed. 2018, 57, 12945 –12949. doi: 10.1002/anie.201807941
  86. Wang M.-M., Waser J. Angew. Chem. Int. Ed. 2020, 59, 16420–16424. doi: 10.1002/anie.202007864
  87. Dauncey E.M., Morcillo S.P., Douglas J.J., Sheikh N.S., Leonori D. Angew. Chem. Int. Ed. 2018, 57, 744–748. doi: 10.1002/anie.201710790
  88. Liu J., Wei Y., Shi M. Org. Chem. Front., 2021, 8, 94–100. doi: 10.1039/d0qo00853b

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Схема 1

Скачать (88KB)
3. Схема 2

Скачать (54KB)
4. Схема 3

Скачать (51KB)
5. Схема 4

Скачать (50KB)
6. Схема 5

Скачать (54KB)
7. Схема 6

Скачать (70KB)
8. Схема 7

Скачать (56KB)
9. Схема 8

Скачать (50KB)
10. Схема 9

Скачать (24KB)
11. Схема 10

Скачать (41KB)
12. Схема 11

Скачать (40KB)
13. Схема 12

Скачать (47KB)
14. Схема 13

Скачать (52KB)
15. Схема 14

Скачать (35KB)
16. Схема 15

Скачать (42KB)
17. Схема 16

Скачать (49KB)
18. Схема 17

Скачать (73KB)
19. Схема 18

Скачать (49KB)
20. Схема 19

Скачать (55KB)
21. Схема 20

Скачать (52KB)
22. Схема 21

Скачать (62KB)
23. Схема 22

Скачать (50KB)
24. Схема 23

Скачать (49KB)
25. Схема 24

Скачать (65KB)
26. Схема 25

Скачать (58KB)
27. Схема 26

Скачать (49KB)
28. Схема 27

Скачать (64KB)
29. Схема 28

Скачать (93KB)
30. Схема 29

Скачать (43KB)
31. Схема 30

Скачать (48KB)
32. Схема 31

Скачать (74KB)
33. Схема 32

Скачать (64KB)
34. Схема 33

Скачать (65KB)
35. Схема 34

Скачать (37KB)
36. Схема 35

Скачать (38KB)
37. Схема 36

Скачать (57KB)
38. Схема 37

Скачать (68KB)
39. Схема 38

Скачать (102KB)
40. Схема 39

Скачать (110KB)
41. Схема 40

Скачать (57KB)
42. Схема 41

Скачать (62KB)
43. Схема 42

Скачать (49KB)
44. Схема 43

Скачать (28KB)
45. Схема 44

Скачать (45KB)
46. Схема 45

Скачать (36KB)
47. Схема 46

Скачать (32KB)
48. Схема 47

Скачать (56KB)
49. Схема 48

Скачать (58KB)
50. Схема 49

Скачать (40KB)
51. Схема 50

Скачать (38KB)
52. Схема 51

Скачать (49KB)
53. Схема 52

Скачать (58KB)
54. Схема 53

Скачать (22KB)
55. Схема 54

Скачать (54KB)
56. Схема 55

Скачать (52KB)
57. Схема 56

Скачать (37KB)
58. Схема 57

Скачать (31KB)
59. Схема 58

Скачать (57KB)
60. Схема 59

Скачать (84KB)
61. Схема 60

Скачать (81KB)
62. Схема 61

Скачать (95KB)
63. Схема 62

Скачать (48KB)
64. Схема 63

Скачать (26KB)
65. Схема 64

Скачать (37KB)
66. Схема 65

Скачать (46KB)
67. Схема 66

Скачать (80KB)
68. Схема 67

Скачать (57KB)
69. Схема 68

Скачать (58KB)
70. Схема 69

Скачать (120KB)
71. Схема 70

Скачать (64KB)
72. Схема 71

Скачать (104KB)
73. Схема 72

Скачать (79KB)
74. Схема 73

Скачать (58KB)
75. Схема 74

Скачать (85KB)
76. Схема 75

Скачать (47KB)
77. Схема 76

Скачать (65KB)
78. Схема 77

Скачать (71KB)
79. Схема 78

Скачать (57KB)
80. Схема 79

Скачать (53KB)
81. Схема 80

Скачать (67KB)
82. Схема 81

Скачать (68KB)
83. Схема 82

Скачать (76KB)
84. Схема 83

Скачать (76KB)
85. Схема 84

Скачать (56KB)
86. Схема 85

Скачать (39KB)
87. Схема 86

Скачать (75KB)

© Российская академия наук, 2025