Quenching of phosphorescence of triple complexes of naphthalene-β-cyclodextrin-cyclohexane with oxygen

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The process of quenching of long-lived phosphorescence of ternary complexes naphthalene-β-cyclodextrin-cyclohexane, localized in the matrix of double complexes β-cyclodextrin-cyclohexane, in aqueous suspension of crystalline hydrates and powder formed by drying of crystalline hydrates has been studied. In the suspension, the phosphorescence kinetics are monoexponential and the quenching is dynamic; the bimolecular quenching constant is equal kq = 0.87 × 105 s–1M–1. In the powder, the phosphorescence kinetics are not monoexponential, which is apparently due to the different surrounding structure of the naphthalene molecules. The inhomogeneity of the environment is expressed in the presence of a distribution of the rate constants of radiation-free processes and a decrease in the availability of naphthalene molecules for interaction with oxygen.

Texto integral

Acesso é fechado

Sobre autores

D. Makhrov

NRC Kurchatov Institute; Moscow Institute of Physics and Technology

Email: dmitriy.ionov@gmail.com

Kurchatov complex of crystallography and photonics, Photochemistry Center department

Rússia, Moscow; Dolgoprudny

D. Ionov

NRC Kurchatov Institute

Autor responsável pela correspondência
Email: dmitriy.ionov@gmail.com

Kurchatov complex of crystallography and photonics, Photochemistry Center department

Rússia, Moscow

I. Ionova

NRC Kurchatov Institute

Email: dmitriy.ionov@gmail.com

Kurchatov complex of crystallography and photonics, Photochemistry Center department

Rússia, Moscow

M. Alfimov

NRC Kurchatov Institute; Moscow Institute of Physics and Technology

Email: dmitriy.ionov@gmail.com

Kurchatov complex of crystallography and photonics, Photochemistry Center department

Rússia, Moscow; Dolgoprudny

Bibliografia

  1. Lu M., Jahanzamin J., Yan X. et al. Organic and Inorganic Materials Based Sensors. Wiley, 2024. P. 1105–1127.
  2. Wang X., Wolfbeis O.S. // Chem. Soc. Rev. 2014. V. 43. № 10. P. 3666–3761.
  3. Quenched-phosphorescence Detection of Molecular Oxygen / ed. Papkovsky D.B., Dmitriev R.I. Cambridge: Royal Society of Chemistry, 2018. 368 p.
  4. Zhou Y., Qin W., Du C. et al. // Angewandte Chem. Int. Ed. 2019. V. 58. № 35. P. 12102–12106.
  5. Lehner P., Staudinger C., Borisov S.M. et al. // Nat. Commun. 2014. V. 5. № 1. P. 4460.
  6. Назаров В.Б., Авакян В.Г., Алфимов М.В. и др. // Известия Академии Наук. Серия Химическая. 2003. С. 1–7.
  7. Nazarov V.B., Vershinnikova T.G., Alfimov M.V. // Russian Chemical Bulletin. 1999. V. 48. № 10. P. 1998–2000.
  8. Nazarov V.B., Avakyan V.G., Alfimov M.V. // Naphthalene: Structure, properties and applications / ed. G.I. Antsyforov, A.F. Ivanski. NY: Nova Science Publishers Inc., 2012. P. 127–153.
  9. Nazarov V.B., Gerko V.I., Alfimov M.V. // Russian Chemical Bulletin. 1997. V. 46. № 8. P. 1386–1388.
  10. Nazarov V.B., Gerko V.I., Alfimov M.V. // JETP Lett. 1997. V. 65. № 7. P. 528–531.
  11. Livshits V.A., Nazarov V.B., Ionova I.V. et al. // Nanotechnol. Russ. 2011. V. 6. № 11–12. P. 677–704.
  12. Nazarov V.B., Avakyan V.G., Vershinnikova T.G. et al. // Russian Chemical Bulletin. 2012. V. 61, № 3. P. 665–667.
  13. Nazarov V.B., Avakyan V.G., Rudyak V.Y. et al. // J. Lumin. 2011. V. 131. № 9. P. 1932–1938.
  14. Nazarov V.B., Avakyan V.G., Vershinnikova T.G. et al. // Russian Chemical Bulletin. 2000. V. 49. № 10. P. 1699–1706.
  15. Nazarov V.B., Avakyan V.G., Alfimov M.V. // J. Lumin. 2020. V. 219. P. 116909.
  16. Nazarov V.B., Avakian V.G., Alfimov M.V. // High Energy Chem. 2019. V. 53. № 2. P. 108–114.
  17. Li W., Corke H., Zhang L. // Starch. 1996. V. 48. № 10. P. 382–385.
  18. Ионов Д.С., Ионова И.В., Мазалов М.А. и др. // Химия высоких энергий. 2023. Т. 57. № 2. С. 91–99.
  19. Mcconkey B.J., Hewitt L.M., Dixon D.G. et al. // Water Air Soil Pollut. 2002. V. 136. P. 347–359.
  20. Vialaton D., Richard C., Baglio D. et al. // J. Photochem. Photobiol. A. 1999. V. 123. P. 15–19.
  21. Li J., Wang L., Li J. et al. // Chemistry – A Eur. J. 2022. V. 28. № 34.
  22. Fudickar W., Linker T. // Chem. Photo Chem. 2021. V. 5. № 11. P. 1004–1008.
  23. NIST Chemistry WebBook, NIST Standard Reference Database Number 69 / ed. Linstrom P.J., Mallard W.G. Gaithersburg MD, 20899: National Institute of Standards and Technology, 2023.
  24. Krasnansky R., Koike K., Thomas J.K. // J. Phys. Chem. 1990. V. 94. № 11. P. 4521–4528.
  25. Principles of Fluorescence Spectroscopy Lakowicz J.R. / ed. J.R. Lakowicz. Boston, MA: Springer US, 2006. № ISBN 0-306-46093-9. 954 p.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Cell for optical measurements of crystalline powder containing Naph–β-CD–CyH complexes.

Baixar (132KB)
3. Fig. 2. Suspension containing ternary complexes Naph–β-CD–CyH at a molar ratio of Naph : β-CD 1 : 100, in air under normal daylight (a) and under UV irradiation with λex = 275 nm (b).

Baixar (400KB)
4. Fig. 3. Micrographs of the obtained crystalline powder Naph–β-CD–CyH and its luminescence (λex = 275 nm).

Baixar (363KB)
5. Fig. 4. Luminescence spectra of ternary complexes Naph–β-CD–CyH in suspension and in the solid phase, measured in the absence of oxygen at room temperature (λex = 275 nm).

Baixar (349KB)
6. Fig. 5. Concentration dependence of the FCT spectra of Naph–β-CD–CyH complexes in suspension (a) and in the solid phase (b) on the O2 content in the gas phase (λex = 275 nm).

Baixar (442KB)
7. Fig. 6. Kinetic curves of fluorescence decay of ternary Naph–β-CD–CyH complexes in suspension (1) and in the solid phase (2), measured in the absence of oxygen at room temperature. (3) – instrument response function (IRF). Excitation wavelength λex = 275 nm.

Baixar (357KB)
8. Fig. 7. Kinetic curves of phosphorescence decay of ternary complexes Naph–β-CD–CyH in suspension (a) and in the solid phase (b), measured at room temperature with different O2 contents (λex = 275 nm).

Baixar (584KB)
9. Fig. 8. Dependences of the lifetimes τ and intensities of the I FCT of the ternary Naph–β-CD–CyH complexes in suspension and in the solid phase on the O2 content in Stern–Volmer coordinates.

Baixar (225KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025