Over-range polyconical antenna with gradient dielectric lens

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

An omnidirectional in one plane polyconical antenna with a torroidal gradient dielectric anisotropic Mikaelian lens, which is made in the form of a set of parallel coaxial disks made of polystyrene of various thicknesses, is proposed and studied using numerical modeling. As a result of the study and optimization of parameters, it was shown that the optimized polyconical antenna with the lens is matched and provides high efficiency in the 40:1 frequency band. The results of numerical modeling are confirmed by the results of measurements of the manufactured antenna prototype.

Толық мәтін

Рұқсат жабық

Авторлар туралы

V. Kaloshin

Kotel’nikov Institute of Radioengeneering and Electronics RAS

Хат алмасуға жауапты Автор.
Email: vak@cplire.ru
Ресей, Mokhovaya St., 11, build. 7, Moscow, 125007

Тхань Nguyen The

Moscow Institute of Physics and Technology (National Research University)

Email: vak@cplire.ru
Ресей, Institutsky per. 9, Dolgoprudny, Moscow region, 141700

Әдебиет тізімі

  1. Kалошин В.А., Мартынов Е.С., Скородумова Е.А. // РЭ. 2011. Т. 56. № 9. С. 1094.
  2. Uskov G.K., Smuseva K.V., Seregina E.A., Bobreshov A.M. // 2022 IEEE8th All-Russian Microwave Conference (RMC). Moscow. 23–25 Nov. N.Y.: IEEE, 2022. P. 191.
  3. Titan Z., Sievert B., Eube M. et al. // 2022 52th Europ. Microwave Conf. (EuMC). Milan. 27–29 Sept. N.Y.: IEEE, 2022. P. 612.
  4. Zhang Z.-Y., Leung K.W., Lu K. // IEEE Trans. 2023. V. AP-71. № 1. P. 58.
  5. Dubrovka F.F., Piltyay S., Mоvchan M., Zakharchuk I. // IEEE Trans. 2023. AP-71. № 4. P. 2922.
  6. Kалошин В.А. // ДАН. 2016. Т. 470. № 2. С. 253.
  7. Pытов С.М. // ЖЭТФ. 1955. Т. 2. № 3. С. 605.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Cross-section of a polyconical antenna with an anisotropic gradient lens.

Жүктеу (195KB)
3. Fig. 2. Fill factor versus coordinate.

Жүктеу (55KB)
4. Fig. 3. Refractive index tensor components versus coordinates: nz (curve 1), ny (curve 2).

Жүктеу (57KB)
5. Fig. 4. Ray trajectories in the lens.

Жүктеу (73KB)
6. Fig. 5. Field distribution in the vertical cross-section of a polyconical antenna with a lens.

Жүктеу (194KB)
7. Fig. 6. Model of a polyconical antenna with a lens.

Жүктеу (166KB)
8. Fig. 7. Reflectivity (RC) of a polyconical antenna with a lens versus frequency: curve 1 – calculation using the MRDC, curve 2 – calculation using the FEM, curve 3 – experimental data.

Жүктеу (229KB)
9. Fig. 8. Normalized radiation patterns of the polyconical antenna at frequencies of 2 (curves 1, 2) and 5 (curves 3, 4) GHz. Curves 1 and 3 are numerical simulation, curves 2 and 4 are experimental data.

Жүктеу (147KB)
10. Fig. 9. Normalized radiation patterns of the polyconical antenna at frequencies of 10 (curves 1, 2) and 15 (curves 3, 4) GHz. Curves 1 and 3 are numerical simulation, curves 2 and 4 are experimental data.

Жүктеу (162KB)
11. Fig. 10. Normalized radiation patterns of the polyconical antenna at frequencies of 25 (curves 1, 2) and 35 (curves 3, 4) GHz. Curves 1 and 3 are numerical simulation, curves 2 and 4 are experimental data.

Жүктеу (129KB)
12. Fig. 11. Dependence of the gain of a polyconical antenna on frequency: curve 1 – numerical simulation, curve 2 – experimental data.

Жүктеу (103KB)
13. Fig. 12. Dependence of the gain of a polyconical antenna on frequency: curve 1 – numerical simulation, curve 2 – experimental data.

Жүктеу (103KB)

© Russian Academy of Sciences, 2025