Интенсификация вакуумной сублимационной сушки матриксов на основе альгинат-хитозана на различных этапах процесса

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

В работе проводится интенсификация вакуумной сублимационной сушки биополимерных матриксов альгинат-хитозана на каждой стадии ведения процесса: от предварительной заморозки до непосредственно самой сушки. В основной части статьи представлены и описаны конструкции установок для проведения процесса замораживания с ультразвуковым воздействием и сушки с инфракрасным и ультразвуковым воздействием. Проведена серия экспериментов по исследованию кинетики замораживания и сушки при различных режимах. Выявлено, что применение ультразвука на этапе заморозки позволяет формировать материалы с широкими направленными каналами в объеме полимерного каркаса, что впоследствии приводит к активному массопереносу влаги на этапе сушки.

Texto integral

Acesso é fechado

Sobre autores

E. Мохова

Российский химико-технологический университет имени Д.И. Менделеева

Autor responsável pela correspondência
Email: lizi5263@yandex.ru
Rússia, Москва

М. Гордиенко

Российский химико-технологический университет имени Д.И. Менделеева

Email: lizi5263@yandex.ru
Rússia, Москва

Н. Меньшутина

Российский химико-технологический университет имени Д.И. Менделеева

Email: lizi5263@yandex.ru
Rússia, Москва

Bibliografia

  1. Bedian L., Villalba-Rodriguez A.M., Hernandez-Vargas G., Parra-Saldivar R., Iqbal H. Bio-Based Materials with Novel Characteristics for Tissue Engineering Applications – A Review // Int. J. Biol. Macromol. 2017. V. 98. P. 837.
  2. Храмцов Д.П., Сулягина О.А., Покусаев Б.Г., Вязьмин А.В., Некрасов Д.А. Нестационарный массоперенос в гелях с микроорганизмами // Теорет. основы хим. технологии. 2023. Т. 57. № 1. С. 71.
  3. Silva A.C.Q., Silvestre A.J.D., Vilela C., Freire C.S.R. Natural Polymers-Based Materials: A Contribution to a Greener Future // Molecules. 2021. V. 27. № 1. P. 94.
  4. Farshidfar N., Iravani S., Varma R.S. Alginate-Based Biomaterials in Tissue Engineering and Regenerative Medicine // Mar. Drugs. 2023. V. 21. № 3. P. 189.
  5. Andersen T., Auk-Emblem P., Dornish M. 3D Cell Culture in Alginate Hydrogels // Microarrays. 2015. V. 4. № 2. P. 133.
  6. Gordienko M.G., Palchikova V.V., Kalenov S.V., Lebedev E.A., Belov A.A., Menshutina N.V. The Alginate–Chitosan Composite Sponges with Biogenic Ag Nanoparticles Produced by Combining of Cryostructuration, Ionotropic Gelation and Ion Replacement Methods // Int. J. Polym. Mater. Polym. Biomater. 2022. V. 71. № 1. P. 34.
  7. Freeze-drying: The Basic Process // Encyclopedia of Food and Health / Eds. Caballero B., Finglas P.M., Toldra F. Oxford: Academic Press, 2016. P. 104.
  8. Семенов Г.В., Краснова И.С. Развитие технологии сублимационной сушки в современной России // Сб. тр. Современные энергосберегающие тепловые и массообменные технологии (сушка, тепловые и массообменные процессы) СЭТМТ. М., 2023. С. 58–60.
  9. Stankiewicz A., Moulijn J.A. Process Intensification // Ind. Eng. Chem. Res. 2002. V. 41. № 8. P. 1920.
  10. Becht S. et al. An industrial view of process intensification // Chemical Engineering and Processing: Process Intensification. 2009. V. 48. № 1. P. 329.
  11. Nowak D., Lewicki P.P. Infrared drying of apple slices // Innovative Food Science & Emerging Technologies. 2004. V. 5. № 3. P. 353.
  12. Duan X. et al. Trends in Microwave-Assisted Freeze Drying of Foods // Drying Technology. 2010. V. 28. № 4. P. 444.
  13. Carcel J.A. et al. Ultrasound Effects on the Mass Transfer Processes during Drying Kinetic of Olive Leaves (Olea Europea, var. Serrana) // DDF. 2010. V. 297–301. P. 1083.
  14. Mokhova E. et al. Ultrasonic freezing of polymers of various compositions before freeze drying: Effect of ultrasound on freezing kinetics and ice crystal size // Drying Technology. 2023. V. 41. № 10. P. 1663.
  15. Hottot A., Nakagawa K., Andrieu J. Effect of ultrasound-controlled nucleation on structural and morphological properties of freeze-dried mannitol solutions // Chemical Engineering Research and Design. 2008. V. 86. № 2. P. 193.
  16. Passot S. et al. Effect of Controlled Ice Nucleation on Primary Drying Stage and Protein Recovery in Vials Cooled in a Modified Freeze-Dryer // Journal of Biomechanical Engineering. 2009. V. 131. № 7. P. 5.
  17. Cogne C. et al. Theoretical model of ice nucleation induced by inertial acoustic cavitation. Part 2: Number of ice nuclei generated by a single bubble // Ultrasonics Sonochemistry. 2016. V. 28. P. 185.
  18. Mozdzierz N.J. et al. Mathematical modeling and experimental validation of continuous slug-flow tubular crystallization with ultrasonication-induced nucleation and spatially varying temperature // Chemical Engineering Research and Design. 2021. V. 169. P. 275.
  19. Morris L. et al. Dynamic monitoring of glycine crystallisation with low power ultrasound reflection spectroscopy // Chemical Engineering Research and Design. 2021. V. 170. P. 213.
  20. Ma X., Mei J., Xie J. Mechanism of ultrasound assisted nucleation during freezing and its application in food freezing process // International Journal of Food Properties. 2021. V. 24. № 1. P. 68.
  21. Garcia-Noguera J. et al. Ultrasound-Assisted Osmotic Dehydration of Strawberries: Effect of Pretreatment Time and Ultrasonic Frequency // Drying Technology. 2010. V. 28. P. 294.
  22. Chow R. et al. A study on the primary and secondary nucleation of ice by power ultrasound // Ultrasonics. 2005. V. 43. № 4. P. 227.
  23. Legay M. et al. Enhancement of Heat Transfer by Ultrasound: Review and Recent Advances // International Journal of Chemical Engineering. 2011. V. 2011. P. 1.
  24. Pan Z. et al. Study of banana dehydration using sequential infrared radiation heating and freeze-drying // LWT – Food Science and Technology. 2008. V. 41. № 10. P. 1944.
  25. Khampakool A., Soisungwan S., Park S.H. Potential application of infrared assisted freeze drying (IRAFD) for banana snacks: Drying kinetics, energy consumption, and texture // LWT. 2019. V. 99. P. 355.
  26. Krishnamurthy K. et al. Infrared Heating in Food Processing: An Overview // Comp Rev Food Sci Food Safety. 2008. V. 7. № 1. P. 2.
  27. Li A. et al. Medium and short-wave infrared drying: Principles, applications, and future trends // Drying Technology. 2023. P. 1.
  28. Xu H. et al. Effect of Power Ultrasound Pretreatment on Edamame Prior to Freeze Drying // Drying Technology. 2009. V. 27. № 2. P. 186.
  29. Brines C. et al. Influence of the Ultrasonic Power Applied on Freeze Drying Kinetics // Physics Procedia. 2015. V. 70. P. 850.
  30. Schössler K., Jäger H., Knorr D. Novel contact ultrasound system for the accelerated freeze-drying of vegetables // Innovative Food Science & Emerging Technologies. 2012. V. 16. P. 113.
  31. Мохова Е.К., Гордиенко М.Г., Меньшутина Н.В. Устройство для интенсификации процесса вакуумной сублимационной сушки с одновременным регулированием инфракрасного нагрева и сменного источника ультразвука в объеме рабочей камеры. Пат. 218559. 2023.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Study of freezing of sucrose solution using ultrasound: formation of cavitation flow (a); growth of dendritic ice crystals (b); fragmentation of crystals under the influence of ultrasound (c).

Baixar (45KB)
3. Fig. 2. Classification of ultrasonic waves depending on frequency and power.

Baixar (20KB)
4. Fig. 3. Schematic diagram of the design for ultrasonic freezing (a): 1 – Petri dish, 2 – stand, 3 – piezoelectric element, 4 – thermocouple, 5 – freezer, 6 – ultrasound generator, 7 – power source, 8 – temperature recorder, 9 – RS-485 interface, 10 – PC; ultrasonic processing mode (b).

Baixar (57KB)
5. Fig. 4. Installation diagram (a): 1 – working chamber, 2 – condenser, 3, 4 – valves, 5 – compressor, 6 – air-cooled condenser, 7 – collector, 8 – filter-dryer, 9 – housing, 10 – vacuum pump, 12 – IR source, 13 – ultrasound source, 14 – temperature sensor, 15 – moisture content sensor, 16 – installation cover, 17 – step-down transformer, 19 – switching relay, 20 – control unit, 21 – personal computer; installation appearance (b).

Baixar (46KB)
6. Fig. 5. Kinetics of freezing of alginate-chitosan samples: Alg-Chit sample (a), comparison of Alg-Chit and Alg-Chit-UZ samples (b).

Baixar (52KB)
7. Fig. 6. Kinetics of vacuum sublimation drying of alginate-chitosan samples: temperature (a), moisture content (b).

Baixar (47KB)
8. Fig. 7. Morphology of the surface of alginate-chitosan-based matrices: chaotic distribution of pores in the volume of the polymer framework (a), formation of microchannels in the polymer framework treated with ultrasound at the freezing stage (b).

Baixar (106KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024