Сопоставительный анализ схем экстрактивной ректификации с различным фазовым состоянием бокового отбора из экстрактивной колонны

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Исследовано влияние агрегатного состояния бокового отбора на энергопотребление схем экстрактивной ректификации, включающих экстрактивную колонну с боковым отбором, на примерах разделения трех бинарных смесей (ацетон–хлороформ, ацетон–метанол, бензол–циклогексан). Для каждой смеси определены оптимальные по критерию суммарных энергетических затрат в кипятильниках колонн параметры четырех схем: традиционной двухколонной; схемы с частично связанными тепловыми и материальными потоками; схемы, включающей экстрактивную колонну с боковым отбором в паровой фазе, и схемы, включающей экстрактивную колонну с боковым отбором в жидкой фазе. Установлено, что энергопотребление в кипятильниках колонн схемы с частично связанными тепловыми и материальными потоками и схем, включающих экстрактивную колонну с боковым отбором, практически совпадает и ниже энергопотребления в кипятильниках колонн традиционной двухколонной схемы. Однако число теоретических тарелок в схемах, включающих экстрактивную колонну с боковым отбором, больше, чем в схемах с частично связанными тепловыми и материальными потоками. Выявлено, что агрегатное состояние бокового отбора практически не влияет на суммарное энергопотребление в кипятильниках колонн схем, включающих экстрактивную колонну с боковым отбором.

Full Text

Restricted Access

About the authors

E. A. Анохина

МИРЭА – Российский технологический университет (Институт тонких химических технологий им. М.В. Ломоносова)

Author for correspondence.
Email: anokhina.ea@mail.ru
Russian Federation, Москва

Д. A. Рамочников

МИРЭА – Российский технологический университет (Институт тонких химических технологий им. М.В. Ломоносова)

Email: anokhina.ea@mail.ru
Russian Federation, Москва

A. В. Тимошенко

МИРЭА – Российский технологический университет (Институт тонких химических технологий им. М.В. Ломоносова)

Email: anokhina.ea@mail.ru
Russian Federation, Москва

References

  1. Серафимов Л.А., Фролкова А.К. Фундаментальный принцип перераспределения полей концентраций между областями ректификации как основа создания технологических комплексов // Теорет. основы хим. технол. 1997. Т. 31. № 2. C. 84.
  2. Павлов С.Ю. Выделение и очистка мономеров для синтетического каучука. Л.: Химия, 1987.
  3. Мазурин О.А., Волков А.Н., Курбатов В.А., Зиятдинов Н.Н. Способ разделения смесей углеводородов изопентан-изоамилен-изопренсодержащией фракции или бутан-бутилен-дивинильной фракции: пат. 2406717 Российская Федерация. № 2008144948/04; заявл.; опубл., Бюл. №35. 5 с.
  4. Гайле А.А., Сомов В.Е. Процессы разделения и очистки продуктов переработки нефти и газа. СПб.: Химиздат, 2012.
  5. Зарецкий М.И. Очистка коксохимического бензола от тиофена. Получение чистого тиофена из тиофеновой фракции методом экстрактивной ректификации. Расчет промышленной установки // Кокс и химия. 2004. № 6. С. 20.
  6. Anokhina E.A., Timoshenko A.V., Akishin A.Yu., Remizova A.V. Benzene purification from thiophene using dimethylformamide as an entrainer in thermally coupled extractive distillation columns // Chem. Eng. Res. Des. 2019. V. 146. P. 391.
  7. Анохина Е.А., Якутин Р.И., Тимошенко А.В. Очистка бензола от тиофена экстрактивной ректификацией с применением колонн с боковым отбором в паровой фазе // Теорет. основы хим. технол. 2021. Т. 55. № 5. С. 578.
  8. Shen W., Dong L., Wei S., Li J., Benyounes H., You X., Gerbaud V. Systematic design of an extractive distillation for maximum-boiling azeotropes with heavy entrainers // AIChE Journal. 2015. V. 61. № 11. P. 3898.
  9. Sprakel L.M.J., Kamphuis P., Nikolova A.L., Keijspe,r D.J., Schuur B. Solvent selection for extractive distillation processes to separate close-boiling polar systems // Chem. Eng. Res. Des. 2019. V. 144. P. 123.
  10. Guo C., Wang F., Xing J., Cui P. Thermodynamic and economic comparison of extractive distillation sequences for separating methanol/dimethyl carbonate/water azeotropic mixtures // Sep. Purif. Technol. 2022. V. 282. P. 120150.
  11. Wang L., Zhang X., Li C., Cao X., Zhao W., Xiang S. Superefficient separation of HFC-245fa/HF using extractive distillation: From computational thermodynamics to process assessment // Sep. Purif. Technol. 2023. V. 307. P. 122663.
  12. Errico M., Rong B.-G., Tola G., Spano M. Optimal synthesis of distillation systems for bioethanol separation. Part 1: Extractive distillation with simple columns // Ind. Eng. Chem. Res. 2013. V. 52. P. 1612.
  13. Raeva V.M., Dubrovskii A.M. Comparison of extractive distillation flowsheets for methanol-tetrahydrofuran-water mixtures // Fine Chem. Technol. 2020. V. 15. № 3. P. 21.
  14. Jian X., Li J., Qing Ye, Lia X. Intensification and analysis of extractive distillation processes with preconcentration for separating ethyl acetate, isopropanol and water azeotropic mixtures // Sep. Purif. Technol. 2022. V. 287. P. 120499.
  15. Sánchez-Ramírez E., Zhang Y., Yang A., Kong Z.Y., Segovia-Hernández J.G., Sunarso J. Integrating sustainability metrics to the design of extractive distillation for ternary azeotropic mixtures of ethanol, tetrahydrofuran, and methanol separation // Chem. Eng. Res. Des. 2023. V. 200. P. 58.
  16. Duan C. and Li Ch. Energy-saving improvement of heat integration for separating dilute azeotropic components in extractive distillation // Energy. 2023. V. 263. P. 125821.
  17. De Figueirêdo M.F., Guedes B.P., Araújo J.M.M., Vasconcelos L.G.S., Brito R.P. Optimal design of extractive distillation columns – A systematic procedure using a process simulator // Chem. Eng. Res. Des. 2011. V. 89. P. 341.
  18. You X., Rodriguez-Donis I. and Gerbaud V. Investigation of separation efficiency indicator for the optimization of the acetone-methanol extractive distillation with water // Ind. Eng. Chem. Res. 2015. V. 54. P. 10863.
  19. De Figueirêdo M.F., Brito K.D., Wagner B.R., Vasconcelos L.G.S., Brito R.P. Optimization of the design and operation of extractive distillation process // Sep. Sci. Technol. 2015. V. 50. P. 2238.
  20. Gutiérrez-Guerra R., Segovia Hernández J.G., Hernández S. Reducing energy consumption and CO2 emissions in extractive distillation // Chem. Eng. Res. Des. 2009. V. 87. P. 145.
  21. Anokhina E., Timoshenko A. Criterion of the energy effectiveness of extractive distillation in the partially thermally coupled columns // Chem. Eng. Res. Des. 2015. V. 99. P. 165.
  22. Timoshenko А.V., Anokhina E.А., Morgunov А.V., Rudakov D.G. Application of the partially thermally coupled distillation flowsheets for the extractive distillation of ternary azeotropic mixtures // Chem. Eng. Res. Des. 2015. V. 104. P. 139.
  23. Cao X., Liu R., Lu Y., Jia Sh., Yuan X. Application of the thermally coupled extractive distillation for recycling octafluoropropane based on thermoeconomic analysis // Sep. Purif. Technol. 2021. V. 279. P. 119813.
  24. Brito R.P., Maciel M.R.W. and Meirelles A.A. New extractive distillation configuration for separating binary azeotropic mixtures // The First European Congress on Chemical Engineering. – Florence, Italy. May 4–7, 1997. V. 2. P. 1333.
  25. Yan H., Song X., Xu L., Yuan X. New single-column extractive distillation with heavy entrainer to separate binary azeotropic mixtures // Sep. Purif. Technol. 2023. V. 312. P. 123393.
  26. Tututi-Avila S., Medina-Herrera N., Hahn J., Jiménez-Gutiérrez A. Design of an energy-efficient side-stream extractive distillation system // Comput. Chem. Eng. 2017. V. 102. P. 17.
  27. Zhang Zh., Wang Ch., Guang Ch., Wang Ch. Separation of propylene oxide-methanol-water mixture via enhanced extractive distillation: Design and control // Chem. Eng. Process. – Process Intensif. 2019. V. 144. P. 107651.
  28. Zhang Q., Zeng A., Yuana X., Ma Y. Design and control of economically attractive side-stream extractive distillation process // Chem. Eng. Res. Des. 2020. V. 160. P. 571.
  29. Chen Y.-Y., Kong Z.Y., Yang A., Lee H.-Y., Sunarso J. Design and control of an energy intensified side-stream extractive distillation for binary azeotropic separation of n-hexane and ethyl acetate // Sep. Purif. Technol. 2022. V. 294. P. 121176.
  30. Luo H., Bildea C.S., Kiss A.A. Novel Heat-pump-assisted extractive distillation for bioethanol purification // Ind. Eng. Chem. Res. 2015. V. 54. P. 2208.
  31. You X., Rodriguez-Donis I., Gerbaud V. Reducing process cost and CO2 emissions for extractive distillation by double-effect heat integration and mechanical heat pump // Applied Energy. 2016. V. 166. P. 128.
  32. Klauzner P.S., Rudakov D.G., Anokhina E.A., Timoshenko A.V. Energy saving in the extractive distillation of isobutyl alcohol–isobutyl acetate with n-butyl propionate // Fine Chem. Technol. 2020. V. 15. P. 14.
  33. Wang C., Zhuang Y., Liu L., Zhang L., Du J. Heat pump assisted extractive distillation sequences with intermediate-boiling entrainer // App. Therm. Eng. 2021. V. 186. P. 116511.
  34. Burachuk A.S., Anokhina E.A., Timoshenko A.V. Heat-pump efficiency in acetone-methanol extractive distillation depending on feed composition // Theor. Found. Chem. Eng. 2023. V. 57. P. 20.
  35. Nova-Rincón A., Ramos M.A., Gómez J.M. Simultaneous optimal design and operation of a diabatic extractive distillation column based on exergy analysis // International Journal of Energy. 2015. V. 17. P. 287.
  36. Rudakov D.G., Klauzner P.S., Anokhina E.A., Timoshenko A.V. Nonadiabatic schemes of the extractive distillation of an acetone–chloroform–n-butanol mixture // Theor. Found. Chem. Eng. 2022. V. 56. No 5. P. 734.
  37. Klauzner P.S., Rudakov D.G., Anokhina E.A., Timoshenko A.V. Energy efficiency of diabatic distillation schemes for an acetone–toluene–n-butanol mixture with an entrainer in the first column // Fine Chem. Technol. 2023. V. 18. No 1. P. 7.
  38. Timoshenko A.V., Anokhina E.A., Ivanova L.V. Extractive distillation systems involving complex columns with partially coupled heat and material flows // Theor. Found. Chem. Eng. 2005. V. 39. P. 463.
  39. Anokhina E.A., Timoshenko A.V. Effect of the side-stream location and the side-stream value on the optimal entrainer flowrate in thermally coupled extractive distillation columns // Theor. Found. Chem. Eng. 2023. V. 57. P. 165.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Various structures of the ER schemes for a binary mixture with a high-boiling separating agent: (a) – traditional two-column, (b) – scheme with partially coupled heat and material flows, (c) – scheme consisting of one ER column with side selection, (d) – scheme including an ER column with side selection. A, B – components of the initial mixture, E – separating agent, EC – extractive distillation column, RC – regeneration column, MC – main column, SS – side section, SSEC – extractive distillation column with side selection, PC – column for cleaning component B from the separating agent, 1–5 – column sections.

Download (22KB)
3. Fig. 2. Graphs of the traditional ER scheme (a) and its images (b, c). – vertex corresponding to the input flow of the column, – vertex corresponding to the output flow of the column with heat removal, – vertex corresponding to the output flow of the column with heat supply, – vertex corresponding to the side flow selection plate.

Download (12KB)
4. Fig. 3. Dependence of energy consumption in the cube of the column for chloroform purification from DMFA on the number of theoretical plates in it: a) when selecting a side stream in the vapor phase, b) when selecting a side stream in the liquid phase.

Download (3KB)
5. Fig. 4. Algorithm for optimizing two-column ER schemes, including an extractive column with side selection.

Download (6KB)
6. Fig. 5. Distribution of component concentrations by the height of the main column of the PTCED scheme (a) and the extractive column with side selection of the DC-SSED-V (b) and DC-SSED-L (c) schemes during the separation of an acetone-chloroform mixture.

Download (60KB)

Copyright (c) 2024 Russian Academy of Sciences