THE FLOW STRUCTURE NEAR THE LEADING EDGE OF A LIQUID LAYER SPREADING ALONG A SUPERHYDROPHOBIC SURFACE

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Flows in the vicinity of the wetting front of a viscous liquid film spreading in a gravity field along inclined, vertical, and horizontal superhydrophobic surfaces (SHS) with a slip boundary condition (Navier condition) are considered.Within the framework of the Stokes film approximation with local allowance for the longitudinal pressure gradient and (or) surface tension, the method of matched asymptotic expansions is used to derive equations describing self-similar solutions for the film surface shape and the flow parameters in the vicinity of a moving wetting front on the SHS. For different surface inclination angles to the horizon, the effect of the slip coefficient on the film surface shape, the dimensions of the region where the longitudinal pressure gradient and (or) surface tension are significant, and the flow structure in this region is investigated based on asymptotic and numerical analysis.

Sobre autores

A. Ageev

Institute of Mechanics, M.V. Lomonosov Moscow State University

Moscow, Russia

A. Osiptsov

Institute of Mechanics, M.V. Lomonosov Moscow State University

Email: osiptsov@imec.msu.ru
Moscow, Russia

Bibliografia

  1. Rothstein J.R. Slip on superhydrophobic surfaces // Ann. Rev. Fluid Mech. 2010. V. 42. P. 89–109. https://doi.org/10.1146/annurev-fluid-121108-145558
  2. Lee C., Choi C.-H., Kim C.-J. Structured surfaces for a giant liquid slip // Phys. Rev. Lett. 2008. V. 101. P. 064501–064504. https://doi.org/10.1103/PhysRevLett.101.064501
  3. Moghadam S.G., Parsimehr H., Ehsani A. Multifunctional superhydrophobic surfaces// Adv. Colloid Interface Sci. 2021. V. 290. P. 102397–102411. https://doi.org/10.1016/j.cis.2021.102397
  4. Lin F., Wo K., Fan X., Wang W., Zou J. Directional transport of underwater bubbles on solid substrates: Principles and applications // ACS Appl. Mater. Interfaces. 2023. V. 15.№8. P. 10325–10340. https://doi.org/10.1021/acsami.2c21466
  5. Jokinen V., Kankuri E., Hoshian S., Franssila S., Ras R.H.A. Superhydrophobic blood-repellent surfaces // Adv. Materials. 2018. V. 30.№24. P. 1705104. https://doi.org/10.1002/adma.201705104
  6. Balasubramanian A., Miller A., Rediniotis O. Microstructured hydrophobic skin for hydrodynamic drag reduction // AIAA J. 2002. V. 42.№2. P. 411–414. https://doi.org/10.2514/1.9104
  7. Агеев А.И., Осипцов А.Н. Пульсирующее течение вязкой жидкости над каверной, содержащей сжимаемый газовый пузырек // Изв. РАН. Механика жидкости и газа. 2021.№6. C. 38–50. https://doi.org/10.31857/S0568528121060013
  8. Bazant M., Vinogradova O. Tensorial hydrodynamic slip // J. Fluid Mech. 2008. V. 613. P. 125–134. https://doi.org/10.1017/S002211200800356X
  9. Агеев А.И., Осипцов А.Н. Макро- и микрогидродинамика вязкой жидкости вблизи супергидрофобной поверхности // Коллоидный журнал. 2022. Т. 84.№4. С. 380–395. https://doi.org/10.31857/S0023291222040024
  10. Воинов О.В. Гидродинамика смачивания // Изв. АН СССР. Механика жидкости и газа. 1976.№5. С. 76–84.
  11. Dussan V.E.B. On the spreading of liquids on solid surfaces: static and dynamic contact lines // Ann. Rev. Fluid Mech. 1979. V. 11. P. 371–400. https://doi.org/10.1146/annurev.fl.11.010179.002103
  12. De Gennes P.G.,Wetting: statics and dynamics // Rev. Mod. Phys. 1985. V. 57.№3. P. 827–863. https://doi.org/10.1017/S0022112090001859
  13. Shikhmurzaev Y.D. Capillary flows with forming interfaces (1st Ed., Chapman and Hall, CRC, New York, 2007). 480 p.
  14. Huppert H.E. The propagation of two-dimensional and axisymmetric viscous gravity currents over a rigid horizontal surface // J. Fluid Mech. 1982. V. 121. P. 43–58. https://doi.org/10.1017/S0022112082001797.
  15. Smith P.C. A similarity solution for slow viscous flow down an inclined plane // J. Fluid Mech. 1973. V. 58. № 2. P. 275–288. https://doi.org/10.1017/S0022112073002594
  16. Осипцов А.А. Трехмерные изотермические течения лавы по неосесимметричной конической поверхности // Изв. РАН. Механика жидкости и газа. 2006.№2. С. 31–45.
  17. Lister J.R. Viscous flows down an inclined plane from point and line sources // J. Fluid Mech. 1992. V. 242. P. 631–653. https://doi.org/10.1017/S0022112092002520
  18. Huppert H.E. Flow and instability of a viscous current down a slope // Nature. 1982. V. 300. P. 427–429. https://doi.org/10.1038/300427a0
  19. Lister J.R., Kerr R.C. The propagation of two-dimensional and axisymmetric viscous gravity currents at a fluid interface // J. Fluid Mech. 1989. V. 203. P. 215–249. https://doi.org/10.1017/S0022112089001448
  20. Moriarty J.A., Schwartz L.W., Tuck E.O. Unsteady spreading of thin liquid films with small surface tension // Phys. Fluids A. 1991. V. 3.№5. P. 733–742. https://doi.org/10.1063/1.858006
  21. Oron A., Davis S.H., Bankoff S.G. Long-scale evolution of thin liquid films // Rev. Modern Phys. 1997. V. 69.№3. P. 931–980. https://doi.org/10.1103/RevModPhys.69.931
  22. Craster R.V., Matar O.K. Dynamics and stability of thin liquid films // Rev. Modern Phys. 2009. V. 81. № 3. P. 1131–1198. https://doi.org/10.1103/RevModPhys.81.1131
  23. Smolka L.B., SeGall M. Fingering instability down the outside of a vertical cylinder// Phys. Fluids. 2011. V. 23. P. 092103–092124. https://doi.org/10.1063/1.3633530
  24. Chakrabarty S., Shen T.W.-H., Chosh S. Dynamics and stability of power-law film flowing down a slippery slope // Phys. Fluids. 2019. V. 31. P. 013102–013119. https://doi.org/10.1063/1.5078450
  25. Агеев А.И., Осипцов А.Н. Автомодельные режимы растекания тонкого слоя жидкости по супергидрофобной поверхности// Изв. РАН, Механика жидкости и газа. 2014.№3. С. 37–51.
  26. Aksenov A.V., Sudarikova A.D., Chicherin I.S. The surface tension effect on viscous liquid spreading along a superhydrophobic surface// IOP Conf. Ser.: J. of Phys. 2017. V. 788. P. 012003. https://doi.org/10.1088/1742-6596/788/1/012003
  27. Аксенов А.В., Сударикова А.Д., Чичерин И.С. Влияние поверхностного натяжения на растекание вязкой жидкости вдоль супергидрофобной поверхности. II. Осесимметричное движение // Вестник НИИЯУ “МИФИ”. 2017. Т. 6.№2. С. 117–125.
  28. Ma C., Liu J., Liu Y. Contact line instability of gravity driven thin films flowing down an inclined plane with wall slippage // Chem. Eng. Sci. 2020. V. 214. P. 115418. https://doi.org/10.1016/j.ces.2019.115418
  29. Ma C., Liu J., Shao M., Li B. , Li L., Xue Z. Effect of slip on the contact-line instability of a thin liquid film flowing down a cylinder // Phys. Rev. E. 2020. V. 101. P. 053108. https://doi.org/10.1103/PhysRevE.101.053108
  30. Dragoni M., Borsari I., Tallarico A. A model for the shape of lava flow fronts // J. Geophys. Res. 2005. V. 110. P. B09203. https://doi.org/10.1029/2004JB003523
  31. Ludviksson V., Lightfoot E.N. Deformation of advancing menisci // AIChE Journal. 1968. V. 14. № 4. P. 674–677. https://doi.org/10.1002/aic.690140433
  32. Tuck E.O., Schwartz L.W. A numerical and asymptotic study of some third-order ordinary differential equations relevant to draining and coating flows // SIAM Rev. 1990. V. 32.№3. P. 453–469. https://doi.org/10.1137/1032079
  33. Munch A., Wagner B. Contact-line instability of dewetting thin films // Physica D. 2005. V 209. P. 178–190. https://doi.org/10.1016/j.physd.2005.06.027
  34. Самарский А.А., Гулин А.В. Численные методы. М.: Наука, 1989. 432 с.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025