Quantum chemical study of the stereochemistry of double bond migration in 2-vinylnorbornane on palladium surface

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

Quantum-chemical modeling of the mechanism of isomerization of endo/exo-isomers of 2-vinylnorbornane (VNB) into Z/E-isomers of 2-ethylidene-norbornane (ENB) has been carried out using the DFT-PBE method. For each isomerization reaction, two 4-step routes including VNB adsorption, ENB desorption, and H atom detachment and attachment steps, the sequence of which depends on the type of route, have been considered. In the “allylic” route, the H atom is first cleaved off, leading to the formation of the allylic intermediate (C7H10)·CHCH2. In the “ethylidene” route, the H atom is initially attached to the terminal C atom, forming the ethylidene intermediate C7H11C·HCH3. According to calculations, an allyl intermediate is formed from adsorbed VNB with a small activation barrier, which binds strongly to the surface. The observed activation energy of almost all routes considered is determined by the energy of this intermediate. In the absence of hydrogen, the allylic intermediates will deactivate the active centers of the catalyst. The experimentally observed stereoselectivity is determined by a thermodynamic factor, namely the relative energy difference between the adsorbed endo/exo-isomers of VNB* and the desorbed Z/E-isomers of ENB. The formed E-ENB from endo-VNB and Z-ENB from exo-VNB have moderate adsorption energies and their desorption is found to be thermodynamically favorable.

Texto integral

Acesso é fechado

Sobre autores

R. Shamsiev

MIREA–Russian Technological University

Autor responsável pela correspondência
Email: shamsiev.r@gmail.com

Lomonosov Institute of Fine Chemical Technologies

Rússia, 86 Vernadsky Ave., Moscow, 119571

V. Flid

MIREA–Russian Technological University

Email: shamsiev.r@gmail.com

Lomonosov Institute of Fine Chemical Technologies

Rússia, 86 Vernadsky Ave., Moscow, 119571

Bibliografia

  1. Беликова Н.А., Каргин В.А., Платэ А.Ф., Платэ Н.А., Тайц Г.С, Лямина И.Н. // Нефтехимия. 1961. Т. 1. С. 218.
  2. Осокин Ю.Г. // Нефтехимия. 2007. Т. 47. № 1. С. 3. (Osokin Y.G. // Petrol. Chem. 2007. V. 47. № 1. P. 1.)
  3. Шорунов С.В., Пискунова Е.С., Петров В.А., Быков В.И., Бермешев М.В. // Нефтехимия. 2018. Т. 58. № 6. С. 712. (Shorunov S.V., Piskunova E.S., Petrov V.A., Bykov V.I., Bermeshev M.V. // Petrol. Chem. 2018. V. 58. № 12. P. 1056.)
  4. Ушаков Н.В. // Журнал прикладной химии. 2018. Т. 91. № 5. С. 631. (Ushakov N.V. // Russ. J. Appl. Chem. 2018. V. 91. № 5. P. 728.)
  5. Осокин Ю.Г., Михайлов В.А., Зубович И.А., Фельдблюм В.Ш. // Докл. АН СССР. 1975. Т. 220. № 4. С. 851.
  6. Osokin Yu.G., Grinberg M.Yu., Feldblyum V.Sh., Yastinskii O.A., Plachtinskii V.V., Kofanov E.R., Ustinov V.A., Mironov G.S. // React. Kinet. Catal. Lett. 1978. V. 9. № 2. P. 189.
  7. Kovács J., Speier G., Markó L. // Acta Chim. Hung. 1976. V. 88. P. 177.
  8. Ishii Y., Saitoh A., Hamanaka S., Ogawa M. // J. Jpn. Pet. Inst. 1986. V. 29. P. 20.
  9. Suzukamo G., Fukao M., Minobe M. // J. Chem. Lett. 1987. P. 585.
  10. Pillari S.M. // React. Kinet. Catal. Lett. 1994. V. 52. P. 35.
  11. Kabashima H., Tsuji H., Hattori H. // React. Kinet. Catal. Lett. 1996. V. 58. № 2. P. 255.
  12. Baba T., Endou T., Handa H., Ono Y. // J. Appl. Catal. A. 1993. V. 97. P. L19.
  13. Cui C., Wang X., Ding Y. // Huagong Keji. 1998. V. 6. № 4. P. 35.
  14. Ермакова А.И., Аншелес В.Р., Рыжих О.Н., Мирзоян Ж.A., Исмайлов Д.Г. // Кинетика и катализ. 1986. Т. 27. № 6. C. 1450. (Ermakova A.I., Ansheles V.R., Ryzhikh O.N., Mirzoyan Z.A., Ismailov D.G. // Kinet. Catal. 1986. V. 27. P. 1259.)
  15. Дураков С.А., Егиазарян К.Т., Шамсиев Р.С., Флид В.Р. // Тонкие хим. технологии. 2023. Т. 18. № 4. С. 355. (Durakov S.A., Egiazaryan К.Т., Shamsiev R.S., Flid V.R. // Tonk. Khim. Tekhnol. 2023. V. 18. № 4. P. 355.)
  16. Замалютин В.В., Шамсиев Р.С., Флид В.Р. // Изв. АН. Сер. хим. 2022. № 10. С. 2142. (Zamalyutin V.V., Shamsiev R.S., Flid V.R. // Russ. Chem. Bull. 2022. V. 71. № 10. P. 2142.)
  17. Замалютин В.В., Кацман Е.А., Рябов А.В., Скрябина А.Ю., Шпынева М.А., Данюшевский В.Я., Флид В.Р. // Кинетика и катализ. 2022. Т. 63. № 2. С. 267. (Zamalyutin V.V., Katsman E.A., Ryabov A.V., Skryabina A.Y., Shpinyova M.A., Danyushevsky V.Y., Flid V.R. // Kinet. Catal. 2022. V. 63. № 2. P. 234.)
  18. Uzio D., Berhault G. // Catal. Rev. Sci. Eng. 2010. V. 52. P. 106.
  19. Laikov D.N. // Chem. Phys. Lett. 1997. V. 281. P. 151.
  20. Лайков Д.Н., Устынюк Ю.А. // Изв. АН. Сер. хим. 2005. № 3. С. 804. (Laikov D.N., Ustynyuk Yu.A. // Russ. Chem. Bull. 2005. V. 54. № 3. P. 820.)
  21. Perdew J.P., Burke K., Ernzerhof M. // Phys. Rev. Lett. 1996. V. 77. P. 3865.
  22. Laikov D.N. // Chem. Phys. Lett. 2005. V. 416. P. 116.
  23. Шамсиев Р.С., Данилов Ф.О., Морозова Т.А. // Изв. АН. Сер. Хим. 2017. № 3. С. 401 (Shamsiev R.S., Danilov F.O., Morozova T.A. // Russ. Chem. Bull. 2017. V. 66. № 3. P. 401.)
  24. Шамсиев Р.С., Данилов Ф.О. // Кинетика и катализ. 2018. Т. 59. № 3. С. 340. (Shamsiev R.S., Danilov F.O. // Kinet. Catal. 2018. V. 59. № 3. P. 333.)
  25. Шамсиев Р.С., Данилов Ф.О. // Изв. АН. Сер. Хим. 2017. № 3. С. 395. (Shamsiev R.S., Danilov F.O. // Russ. Chem. Bull. 2017. V. 66. № 3. P. 395.)
  26. Kozuch S., Martin J.M.L. // ACS Catal. 2011. V. 1. P. 246.
  27. Темкин О.Н. О различных взаимосвязях кинетики и термодинамики. Saarbrücken: Lambert Acad. Publ., 2016. 119 p.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Optimized structures of Pd70 (a) and Pd70H4 (b)

Baixar (3MB)
3. Fig. 2. Potential rotation curves of the vinyl group in the endo- (dashed line) and exo- (solid line) isomers of 2-vinylnorbornane.

Baixar (1011KB)
4. Fig. 3. Energy profiles of isomerization of endo-2-vinylnorbornane to E-2-ethylidenenorbornane (a) and Z-2-ethylidenenorbornane (b) on the Pd(111) surface (* ≡ Pd70H4).

Baixar (998KB)
5. Fig. 4. Optimized structures of adsorption structures and intermediates of the isomerization mechanism of endo-VNB to E-ENB and Z-ENB. The upper face of the Pd cluster is shown.

Baixar (4MB)
6. Fig. 5. Energy profiles of isomerization of exo-2-vinylnorbornane to E-2-ethylidenenorbornane (a) and Z-2-ethylidenenorbornane (b) on the Pd(111) surface (* ≡ Pd70H4).

Baixar (1MB)
7. Fig. 6. Optimized structures of adsorption structures and intermediates of the isomerization mechanism of exo-VNB in ​​E-ENB and Z-ENB. The upper face of the Pd cluster is shown.

Baixar (4MB)
8. Scheme 1. Transformations of endo-2-vinylnorbornane and its isomerization intermediates into (Z/E)-2-ethylidenenorbornane on the Pd surface.

Baixar (1MB)
9. Scheme 2. Transformations of exo-2-vinylnorbornane and its isomerization intermediates into (Z/E)-2-ethylidenenorbornane on the Pd(111) surface.

Baixar (1MB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024