Synthesis, docking and biological activity of antimetabolites based on uraciles and 5-substituted 2,6-dimethylpyrimidin-4(3h)-ones

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

5-Substituted 2,4-dimethyl-1,6-dihydropyrimidin-6-ones reacted with aromatic aldehydes to form 5-substituted (Z)-2-(2-aryl)-1-ethenylpyrimidin-6-ones, and in the reaction of 5-(4-fluorobenzyl)-2,6-dimethylpyrimidin-4(3 H )-one with 4-fluorobenzaldehyde, 5-(4-fluorobenzyl)-2,6-bis[( E )-4-fluorostyryl]pyrimidin-4(3 H )-one. Uracil and 5-fluorouracil were alkylated with 4-methoxy-2-chloromethylbenzaldehyde to give 2-[2,4-dioxoand 5-fluoro-2,4-dioxo-3,4-dihydropyrimidine-1(2 H )methyl]-4-methoxybenzaldehydes and are condensed with 5-substituted 2,4-dimethyl-1,6-dihydropyrimidin-6-ones to form 1-{5[( E )-2-(5-butyl-, arylmethyl-4-methyl6-oxo-1,6-dihydro-pyrimidin-2-yl)vinyl]-2-methoxybenzyl}uracil, 5-fluorouracil, and 5-bromouracil. The results of docking studies and data on the antibacterial, antitumor, and antimonoamine oxidase activity of the synthesized compounds are presented.

About the authors

A. A. Harutyunyan

Scientific and Technological Centre of Organic and Pharmaceutical Chemistry, NAS RA

Email: harutyunyan.arthur@yahoo.com

A. S. Sumbatyan

Scientific and Technological Centre of Organic and Pharmaceutical Chemistry, NAS RA

A. A. Hambardzumyan

Scientifc and Production Center “Armbiotechnology” NAS RA

Email: arthambardzumyan@gmail.com

H. A. Panosyan

Scientific and Technological Centre of Organic and Pharmaceutical Chemistry, NAS RA

A. S. Grigoryan

Scientific and Technological Centre of Organic and Pharmaceutical Chemistry, NAS RA

H. M. Stepanyan

Scientific and Technological Centre of Organic and Pharmaceutical Chemistry, NAS RA

R. E. Muradyan

Scientific and Technological Centre of Organic and Pharmaceutical Chemistry, NAS RA

References

  1. Tylinska B., Wiatrak B., Czyznikowska Z., Ciesla-Niechwiadowicz A., Gebarowska E., Janickaklos A. Int. J. Mol. Sci. 2021, 22, 3825-3842. doi: 10.3390/ijms22083825
  2. Арутюнян А.А., Паносян Г.А., Тамазян Р.А., Айвазян А.Г., Гукасян Г.Т., Данагулян Г.Г. ЖОрХ. 2018, 54, 612-619.
  3. Harutyunyan A.A., Gukasyan G.T., Danagulyan G.G., Panosyan H.A., Tamazyan R.A., Aivazyan A.G. Russ. J. Org. Chem. 2018, 54, 771-775. doi: 10.1134/S1070428018040164
  4. Sanduja M., Gupta G., Virmani T. J. Appl. Pharm. Sci. 2020, 10, 129-146. doi: 10.7324/JAPS.2020.102019
  5. Арутюнян А.А., Гукасян Г.Т., Паносян Г.А., Тамазян Р.А., Айвазян А.Г., Данагулян Г.Г. ЖОрХ. 2018, 54, 766-770.
  6. Harutyunyan A.A., Gukasyan G.T., Danagulyan G.G., Panosyan H.A., Tamazyan R.A., Aivazyan A.G. Russ. J. Org. Chem. 2018, 54, 771-775. doi: 10.1134/S1070428018050160
  7. Li P., Maier J.M., Vik E.C., Yehl C.J., Dial B.E., Rickher A.E., Smith M.D., Pellechia P.J., Shimizu K.D. Angew. Chem. 2017, 129, 1. doi: 10.1002/anie.201702950
  8. Hambardzumyan A.A., Hovsepyan A.S., Hayrapetyan H.L., Chailyan S.G. Int. J. Pept. Res. Ther. 2021, 27, 1597-1604. doi: 10.1007/s10989-021-10194-z
  9. Gao Y., Yan L., Huang Y., Liu F., Zhao Y., Cao L., Wang T., Sun Q., Ming Z., Zhang L., Ge J., Zheng L., Zhang Y., Wang H., Zhu Y., Zhu C., Hu T., Hua T., Zhang B., Yang X., Li J., Yang H., Liu Z., Xu W., Guddat L.W., Wang Q., Lou Zh., Rao Z. Science. 2020, 368, 779-782. doi: 10.1126/science.abb7498
  10. Kirsch K., Zeke A., Toke O., Sok P., Sethi A., Sebo A., Kumar G.S., Egri P., Poti A.L., Gooley P., Peti W., Bento I., Alexa A., Remeny A. Nat. Commun. 2020, 11, 5769. doi: 10.1038/s41467-020-19582-3

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Russian Academy of Sciences