Dynamic Structure of Organic Compounds in Solution According to NMR Data and Quantum Mechanical Calculations: IV. Benzamide

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

To study the structure and dynamics of nitrogen-containing compounds, NMR parameters with directly involved nitrogen can provide valuable structure information. However, this information can only be obtained using15N-enriched compounds due to low natural abundance of 15N and extremely short relaxation of 14N nuclei. For synthesis of these compounds from 15N-ammonium salts, 15N-enriched benzamides often used as intermediates. In the present work, we study the dynamic structure of benzamide caused by two independent factors: hindered internal rotation of the NH2 group around the C(O)-N bond and the amide group as a whole relative to the benzene ring. This deeper knowledge of mechanism and parameters of these processes in amides is important for meaningful interpretation and prediction of the biological activity of aromatic amides in living systems, the strength and conformation of its supramolecular complexes with lanthanide and actinide ions. Double enriched [2H5, 15N]benzamide was synthesized to avoid unwanted superposition of intense aromatic multiplet on the amide signals in the 1H NMR spectra. In the 1H spectrum of this compound observed only intense signals of amide protons, which allowed accurate quantitative characterization of the parameters of the dynamic processes under study. The experimental data obtained is in good agreement with our results of simulation by quantum molecular dynamics techniques.

About the authors

V. V. Stanishevskiy

Lomonosov Moscow State University

A. K. Schestakova

State Scientific Research Institute of Chemistry and Technology of Organoelement Compounds

V. A. Chertkov

Lomonosov Moscow State University

Email: vchertkov@hotmail.com

References

  1. Ганина Т.А. Чертков В.А. ЖОрХ. 2019, 55, 411-419.
  2. Ganina T.A., Chertkov V.A. Russ. J. Org. Chem. 2019, 55, 354-361. doi: 10.1134/S107042801903014X
  3. Leskowitz G.M., Ghaderi N., Olsen R.A., Pederson K., Hatcher M.E., Mueller L.J. J. Phys. Chem. A. 2005, 109, 1152-1158. doi: 10.1021/jp0460689
  4. Koz'minykh V.O. Pharm. Chem. J. 2006, 40, 8-17. doi: 10.1007/s11094-006-0048-0
  5. Wong M.W., Wiberg K.B. J. Phys. Chem. 1992, 96, 668. doi: 10.1021/jp304300n
  6. Ustynyuk Yu.A., Zhokhova N.I., Gloriozov I.P., Matveev P.I., Evsiunina M.V., Lemport P.S., Pozdeev A.S., Petrov V.G., Yatsenko A.V., Tafeenko V.A., Nenajdenko V.G., Int. J. Mol. Sci. 2022, 23, 15538. doi: 10.3390/ijms232415538
  7. Palyulin V.A., Emets S.V., Chertkov V.A., Kasper C., Schneider H-Y. Eur. J. Org. Chem. 1999, 3479-3482.
  8. Stewart W.E., Siddall T.H. III. Chem. Rev. 1970, 70, 517-551. doi: 10.1021/cr60267a001
  9. Coursindel T., Farran D., Martinez J., Dewynter G. Tetrahedron Lett. 2008, 49, 906-909. doi: 10.1016/j.tetlet.2007.11.159
  10. Shestakova T.S., Shenkarev Z.O., Deev S.L., Chupakhin O.N., Khalymbadzha I.A., Rusinov V.L., Arseniev A.S. J. Org. Chem. 2013, 78, 6975-6982. doi: 10.1021/jo4008207
  11. Sandström J. Dynamic NMR Spectroscopy. New York: Academic Press. 1982.
  12. Bagchi B., Jana B. Chem. Soc. Rev. 2010, 39, 1936-1954. doi: 10.1039/b902048a
  13. Lopez J.C., Alonso J.L., Pena I., Vaquero V. Phys. Chem. Chem. Phys. 2010, 12, 14128-14134. doi: 10.1039/c0cp00665c
  14. Kubica D., Molchanov S., Gryff-Keller A. J. Phys. Chem. A. 2017, 121, 1842-1849. doi: 10.1021/acs.jpca.7b00144
  15. Perrin C.L., Nielson J.B. Annu. Rev. Phys. Chem. 1997, 48, 511. doi: 10.1146/annurev.physchem.48.1.511
  16. Kamorin D.M., Rumyantsev M., Kazantsev O.A., Sivokhin A.P., Kamorina S.I. J. Appl. Polym. SCI. 2017, 134, 44412. doi: 10.1002/app.44412
  17. Aitken R.A., Smith M.H., Wilson H.S. J. Mol. Struct. 2016, 1113, 171-173. doi: 10.1016/j.molstruc.2016.02.030
  18. Loening M.N., Keeler J., Morris G.A. J. Magn. Reson. 2001, 153, 103-112. doi: 10.1006/jmre.2001.2423
  19. Evans R., A. Hernandez-Cid A., Poggetto G.D., Vesty A., Haiber S., Morris G.A., Nilsson M. RSC Adv. 2017, 7, 449-452. doi: 10.1039/c6ra26144b
  20. Shimanski S., Bernatowicz P. Clasical and Quantum Molecular Dynamics in NMR Spectra. Cham: Springer. 2018. doi: 10.1007/978-3-319-90781-9
  21. Stanishevskiy V.V., Shestakova A.K., Chertkov V.A. Appl. Magn. Reson. 2022, 53, 1693-1713. doi: 10.1007/s00723-022-01503-w
  22. Abraham R.J., Griffiths L., Perez M. Magn. Reson. Chem. 2013, 51, 143-155.
  23. Leshcheva I.F., Torocheshnikov V.N., Sergeyev N.M., Chertkov V.A., Khlopkov V.N. J. Magn. Reson. 1991, 94, 1-8. doi: 10.1016/0022-2364(91)90289-6
  24. Levitt M.H. Spin Dynamics. New York: Wiley. 2005.
  25. Berger S. NMR Basic Principles and Progress. 1990, 22, 1-29.
  26. Hansen P.E. Prog. Nucl. Magn. Reson. Spectrosc. 2020, 120, 109-117. doi: 10.1016/j.pnmrs.2020.08.001
  27. Dziembowska T., Hansen P.E., Rozwadowskia Z. Prog. Nucl. Magn. Reson. Spectrosc. 2004, 45, 1-29. doi: 10.1016/j.pnmrs.2004.04.001
  28. Roznyatovsky V.A., Sergeyev N.M., Chertkov V.A. Magn. Reson. Chem. 1991, 29, 304-307 doi: 10.1002/mrc.1260290404
  29. Pietrzak M., Benedict C., Gehring H., Daltrozzo E., Limbach H.H. J. Mol. Struct. 2007, 844-845, 222-231. doi: 10.1016/j.molstruc.2007.04.023
  30. Guzzo T., Aramini A., Lillini S., Nepravishta R., Paci M., Topai A. Tetrahedron Lett. 2015, 56, 4455-4458. doi: 10.1016/j.tetlet.2015.05.084
  31. Hansen P.E. Ann. Rep. NMR Spectrosc. 1983, 15, 105-234.
  32. Leshcheva I.F., Torocheshnikov V.N., Sergeyev N.M., Chertkov V.A., Khlopkov V.N. J. Magn. Reson. 1991, 94, 9-19. doi: 10.1016/0022-2364(91)90290-a
  33. Taha A., True N. J. Phys. Chem. A. 2000, 104, 2985-2993. doi: 10.1021/jp993915c
  34. Gamov G.A., Aleksandriiskii V.V., Sharnin V.A. J. Mol. Liq. 2017, 231, 238-241. doi: 10.1016/j.molliq.2017.01.078
  35. Olsen R.A., Liu L., Ghaderi N., Johns A., Hatcher M.E., Mueller L.J. J. Am. Chem. Soc. 2003, 125, 10125. doi: 10.1021/ja028751j
  36. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J.A., Jr., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Rega N., Millam J.M., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas O., Foresman J.B., Ortiz J.V., Cioslowski J., Fox D.J. Gaussian 09W, Revision A.02, Gaussian, Inc., Wallingford. 2009
  37. Foresman J.B., Frisch A. Exploring Chemistry with Electronic Structure Methods. Pittsburgh: Gaussian Inc. 1996.
  38. Ganina T.A., Cheshkov D.A., Chertkov V.A. Russ. J. Org. Chem. 2017, 53, 12-23, doi: 10.1134/S1070428017010043
  39. Godunov I.A., Bataev V.A., Abramenkov A.V., Pupyshev V.I. J. Phys. Chem. A. 2014, 118, 10159. doi: 10.1021/jp509602s
  40. Ganina T.A., Chertkov V.A. Russ. J. Org. Chem. 2016, 52, 489-498. doi: 10.1134/S1070428016040023
  41. Chertkov V.A., Shestakova A.K., Davydov D.V. Chem. Heterocycl. Compd. 2011, 47, 45-54. doi: 10.1007/s10593-011-0718-z
  42. Uvarov V.A., Chertkov V.A., Sergeyev N.M. J. Chem. Soc. Perkin. Trans. 2. 1994, 2, 2375-2378. doi: 10.1039/P29940002375
  43. Morgan W.D., Birdsall B., Nieto P.M., Gargaro A.R., Feeney J. Biochemistry. 1999, 38, 2127-2134. doi: 10.1021/bi982359u
  44. Williamson R.T., Buevich A.V., Martin G.E. Tetrahedron Lett. 2014, 55, 3365-3366. doi: 10.1016/j.tetlet.2014.04.060
  45. Berger S., Braun S. 200 and more NMR Experiments. Oxford, Weinheim: Wiley. 2014.
  46. Claridge T.D.W. High-resolution NMR Techniques in Organic Chemistry. Tetrahedron Organic Chemistry Series. Oxford: Elsevier. 2009, 27.
  47. Reutov O.A., Barinov I.V., Chertkov V.A., Sokolov V.I. J. Organomet. Chem. 1985, 297, C25-C29. doi: 10.1016/0022-328X(85)80443-5

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Russian Academy of Sciences