2,2-dichlorovinulketones-based 5-chloro-3-styryl-1H-pyrazoles synthesis
- Authors: Kobelevskaya V.A1, Zinchenko S.V1, Popov A.V1
-
Affiliations:
- A.E. Favorsky Irkutsk Institute of Chemistry, SB RAS
- Issue: Vol 59, No 6 (2023)
- Pages: 772-780
- Section: Articles
- URL: https://aspvestnik.ru/0514-7492/article/view/666249
- DOI: https://doi.org/10.31857/S0514749223060058
- EDN: https://elibrary.ru/FAOAGD
- ID: 666249
Cite item
Abstract
Condensation of 4,4-dichlorobut-3-en-2-one with aromatic aldehydes in the presence of catalytic amounts of sulfuric acid leads to the formation of 1,1-dichloro-5-(4-R-phenyl)penta-1,4-diene-3-ones. The reaction of 1,4-dien-3-ones with hydrazines proceeds chemo- and regioselectively under mild conditions with the formation of ( E )-1-methyl-3-styryl-5-chloro-1 H -pyrazoles with a yield reaching 81%. 4-Bromo-1,1-dichloro-5-(4-methoxyphenyl)penta-1,4-dien-3-one reacts with dimethylhydrazine to give 3-[1-bromo-2-(4-methoxyphenyl)vinyl]-5chloro-1-methyl-1 H -pyrazole, which in the presence of KF in DMSO at 120°C forms 1-methyl-3-[(4-methoxyphenyl)ethynyl]-5-chloro-1 H -pyrazole with 69% yield. The structure of the synthesized compounds has been confirmed using IR, NMR spectroscopies, mass spectrometry, and elemental analysis.
About the authors
V. A Kobelevskaya
A.E. Favorsky Irkutsk Institute of Chemistry, SB RAS
Email: valkob@irioch.irk.ru
S. V Zinchenko
A.E. Favorsky Irkutsk Institute of Chemistry, SB RAS
A. V Popov
A.E. Favorsky Irkutsk Institute of Chemistry, SB RAS
References
- Marinescu M. Antibiotics. 2021, 10, 1-29. doi: 10.3390/antibiotics10081002
- Faria J.V., Vegi P.F., Miguita A.G.C., Silva dos Santos M., Boechat N., Bernardino A.M.R. Bioorg. Med. Chem. 2017, 25, 5891-5903. doi: 10.1016/j.bmc.2017.09.035
- Karrouchi K., Radi S., Ramli Y., Taoufik J., Mabkhot Y.N., Al-aizari F.A., Ansar M. Molecules. 2018, 23, 134. doi: 10.3390/molecules23010134
- Ansari A., Ali A., Asif M., Shamsuzzaman. New J. Chem. 2017, 41, 16-41. doi: 10.1039/c6nj03181a
- Khan M.F., Alam M.M., Verma G., Akhtar W., Akhter M., Shaquiquzzaman M. Eur. J. Med. Chem. 2016, 120, 170-201. doi: 10.1016/j.ejmech.2016.04.077
- Kücükgüzel Ş.G., Şekardeş S. Eur. J. Med. Chem. 2015, 97, 786-815. doi: 10.1016/j.ejmech.2014.11.059
- Bennani F.E., Doudach L., Gherrah Y., Ramli Y., Karrouchi K., Ansar M., Faouzi M.El. A. Bioorg. Chem. 2020, 97, 103470. doi: 10.1016/j.bioorg.2019.103470
- Silva V.L.M., Elguero J., Silva A.M.S. Eur. J. Med. Chem. 2018, 156, 394. doi: 10.1016/j.ejmech.2018.07.007
- Jeschke P. Eur. J. Org. Chem. 2022, e202101513. doi: 10.1002/ejoc.202101513
- Kashyap S., Singh R., Singh U.P. Coord. Chem. Rev. 2020, 417, 213369. doi: 10.1016/j.ccr.2020.213369
- Alkorta I., Claramunt R.M., Dies-Barra E., Elguero J., de la Hoz A., Lopez C. Coord. Chem. Rev. 2017, 339, 153-182. doi: 10.1016/j.ccr.2017.03.011
- Mukherjee R. Coord. Chem. Rev. 2000, 203, 151-218. doi: 10.1016/S0010-8545(99)00144-7
- Dias H.R.V., Lovely C.J. Chem. Rev. 2008, 108, 3223-3238. doi: 10.1021/cr078362d
- El Boutaybi M., Taleb A., Touzani R., Bahari Z. Mater. Today Proc. 2020, 31, 96-102. doi: 10.1016/j.matpr.2020.06.249
- El Boutaybi M., Taleb A., Touzani R., Bahari Z. Arab. J. Chem. Environ. Res. 2020, 07, 1-11.
- Pettinari C., Tăbăcaru A., Galli S. Coord. Chem. Rev. 2016, 307, 1-31. doi: 10.1016/j.ccr.2015.08.005
- Aysha T.A., Mohamed M.B. I., El-Sedik M.S., Youssef Y.A. Dyes Pigm. 2021, 196, 109795. doi: 10.1016/j.dyepig.2021.109795
- Demircali A., Karci F., Sari F. Colorat. Technol. 2021, 137, 280-291. doi: 10.1111/cote.12530
- Tao T., Zhao X.-L., Wang Y.-Y., Oian H.-F., Huang W. Dyes Pigm. 2019, 166, 226-232. doi: 10.1016/j.dyepig.2019.03.046
- Fustero S., Sánchez-Roselló M., Barrio P., Simón-Fuentes A. Chem Rev. 2011, 111, 6984-7034. doi: 10.1021/cr2000459
- Fustero S., Simón-Fuentes A., Sanz-Cervera J.F. Org. Prep. Proced. Int. 2009, 41, 253-290. doi: 10.1080/00304940903077832
- Janin Y.L. Chem. Rev. 2012, 112, 3924-3958. doi: 10.1021/cr200427q
- Abdelhamid I.A., Hawass M.A.E., Sanad S.M.H., Elwahy A.H.M. Arkivoc. 2021, i, 162-235. doi: 10.24820/ark.5550190.p011.404
- Abdelhamid I.A., Hawass M.A.E., Sanad S.M.H., Elwahy A.H.M. Arkivoc. 2021, ix, 42-74. doi: 10.24820/ark.5550190.p011.542
- Zhang Q., Hu B., Zhao Y., Zhao S., Wang Y., Zhang B., Yan S., Yu F. Eur. J. Org. Chem. 2020, 1154-1159. doi: 10.1002/ejoc.201901886
- Moon H.R., Yu J., Kim K.H., Kim J.N. Bull. Korean Chem. Soc. 2015, 36, 1189-1195. doi: 10.1002/bkcs.10225
- Almirante N., Cerri A., Fedrizzi G., Marazzi G., Santagostino M. Tetrahedron Lett. 1998, 39, 3287-3290. doi: 10.1016/S0040-4039(98)00472-9
- Adamo M.F.A., Adlington R.M., Baldwin J.E., Pritchard G. J., Rathmell R. E. Tetrahedron. 2003, 59, 2197-2205. doi: 10.1016/S0040-4020(03)00244-8
- Baldwin J.E., Pritchard G.E., Rathmell R.E. J. Chem. Soc., Perkin Trans. 1. 2001, 2906-2908. doi: 10.1039/b108645f
- Sherin D.R., Rajasekharan K.N. Arch. Pharm. Chem. Life Sci. 2015, 348, 908-914. doi: 10.1002/ardp.201500305
- Zona C., La Ferla B.L. Label Compd. Radiopharm. 2011, 54, 629-632. doi: 10.1002/jlcr.1907
- Shim J.S., Kim D.H., Jung H.J., Kim J.H., Lim D., Lee S.-K., Kim K.-W., Ahn J.W., Yoo J.-S., Rho J.-R., Shin J., Kwon H. J. Bioorg. Med. Chem. 2002, 10, 2439-2444. doi: 10.1016/S0968-0896(02)00116-5
- Kim H.T., Ha H., Kang G., Kim O.S., Ryu H., Biswas A.K., Lim S.M., Baik M.-H., Joo J.M. Angew. Chem. Int. Ed. 2017, 56, 16262-16266. doi 10.102/anie.201709162
- Jagtap R.A., Vinod C.P., Punji B. ACS Catal. 2019, 9, 431-441. doi: 10.1021/acscatal.8b04267
- Arbačiauskienė E., Martynaitis V., Krikštolaitytė S., Holzer W., Šačkus A. Arkivoc. 2011, xi, 1-21. doi: 10.3998/ark.5550190.0012.b01
- Mazeikaite R., Sudzius J., Urbelis G., Labanauskas L. Arkivoc. 2014, vi, 54-71. doi: 10.3998/ark.5550190.p008.842
- Karabiyikoglu S., Zora M. Appl. Organometal. Chem. 2016, 30, 876-885. doi: 10.1002/aoc.3516
- Vasilevsky S.F., Klyatskaya S.V., Tretyakov E.V., Elguero J. Heterocycles. 2003, 60, 879-886. doi: 10.3987/COM-02-9698
- Eller G.A., Vilkauskaite G., Arbačiauskienė E., Šačkus A., Holzer W. Synth. Commun. 2011, 41, 541-547. doi: 10.1080/00397911003629382
- Vilkauskaite G., Šačkus A., Holzer W. Eur. J. Org. Chem. 2011, 5123-5133. doi: 10.1002/ejoc.20110026
- Arbačiauskienė E., Vilkauskaite G., Šačkus A., Holzer W. Eur. J. Org. Chem. 2011, 1880-1890. doi: 10.1002/ejoc.201001560
- Liu J., Xu E., Jiang J., Huang Z., Zheng L., Liu Z.-Q. Chem. Commun. 2020, 56, 2202-2205. doi: 10.1039/c9cc09657d
- Mi P., Lang J., Lin S. Chem. Commun. 2019, 55, 7986-7989. doi: 10.1039/c9cc03363g
- Fan Z., Feng J., Hou Y., Rao M., Cheng J. Org. Lett. 2020, 22, 7981-7985. doi: 10.1021/acs.orglett.0c02911
- Yoshimatsu M., Kawahigashi M., Honda E., Kataoka T. J. Chem. Soc., Perkin Trans. 1. 1997, 695-700. doi: 10.1039/A605542G
- Levkovskaya G.G., Kobelevskaya V.A., Rudyakova E.V., Ha K.H., Samultsev D.O., Rozentsveig I.B. Tetrahedron. 2011, 67, 1844-1851. doi: 10.1016/j.tet.2011.01.028
- Кобелевская В.А., Попов А.В., Левковская Г.Г., Рудякова Е.В., Розенцвейг И.Б. ЖОрХ. 2018, 54, 1493-1496.
- Kobelevskaya V.A., Popov A.V., Levkovskaya G.G., Rudyakova E.V., Rozentsveig I.B. Russ. J. Org. Chem. 2018, 54, 1505-1508. doi: 10.1134/S1070428018100111
- Levkovskaya G.G., Rudyakova E.V., Kobelevskaya V.A., Popov A.V., Rozentsveig I.B. Arkivoc. 2016, iii, 82-89. doi: 10.3998/ark.5550190.p009.383
- Popov A.V., Kobelevskaya V.A., Larina L.I., Levkovskaya G.G. Mendeleev Comm. 2017, 27, 178-179. doi: 10.1016/j.mencom.2017.03.024
- Popov A.V., Kobelevskaya V.A., L.I. Larina I.B. Rozentsveig B. Arkivoc. 2019, vi, 1-14. doi: 10.24820/ark.5550190.p010.934
- Кобелевская В.А., Попов А.В., Никитин А. Я., Левковская Г.Г. ЖОрХ. 2017, 53, 145-147.
- Kobelevskaya V.A., Popov A.V., Nikitin A.Ya., Levkovskaya G.G. Russ. J. Org. Chem. 2017, 53, 144-146. doi: 10.1134/S1070428017010298
- Кобелевская В.А, Дьячкова С.Г., Попов А.В., Левковская Г.Г. ЖОрХ. 2016, 52, 915-917.
- Kobelevskaya V.A., D'yachkova S.G., Popov A.V., Levkovskaya G.G. Russ. J. Org. Chem. 2016, 52, 911-913. doi: 10.1134/S1070428016060270
Supplementary files
