Functional derivatization of 3- and 5-substituted cyclooctenes

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

New derivatives of cyclooctene with an ester group in the 3- and 5-positions have been synthesized in high yield. The structure of obtained compounds was confirmed by a complex of physicochemical methods. The products are of interest as monomers for the synthesis of hydrophilic and amphiphilic homo- and copolymers using ring-opening metathesis polymerization of olefins. Owing to the unsaturated backbone, such polymers can undergo further modification, including by the reaction of macromolecular cross-metathesis.

About the authors

O. A Adzhieva

A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences

Email: finko.alexander@gmail.com

A. V Finko

A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences;Moscow State University

Email: finko.alexander@gmail.com

A. V Roenko

A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences

Email: finko.alexander@gmail.com

Yu. I. Denisova

A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences

Email: finko.alexander@gmail.com

Y. V Kudryavtsev

A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences

Email: finko.alexander@gmail.com

References

  1. Andresen T.L., Skytte D.M., Madsen R. Org. Biomol. Chem. 2004, 2, 2951-2957. doi: 10.1039/B411021H
  2. Hughes D.L., Wheeler P., Ene D. Org. Process Res. Dev. 2017, 21, 1938-1962. doi: 10.1021/acs.oprd.7b00319
  3. Schuster M., Blechert S. Angew. Chem. Int. Ed. 1997, 36, 2036-2056. doi: 10.1002/anie.199720361
  4. Dragutan I., Dragutan V., Demonceau A. RSC Adv. 2012, 2, 719-736. doi: 10.1039/C1RA00910A
  5. Mol J.C. Green Chem. 2002, 4, 5-13. doi: 10.1039/B109896A
  6. Chikkali S., Mecking S. Angew. Chem. 2012, 51, 5802-5808. doi: 10.1002/anie.201107645
  7. Bilel H., Hamdi N., Fischmeister C., Bruneau C. ChemCatChem. 2020, 12, 5000-5021. doi: 10.1002/cctc.202000959
  8. Bielawski C.W., Grubbs R.H. Prog. Polym. Sci. 2007, 32, 1-29. doi: 10.1016/j.progpolymsci.2006.08.006
  9. Schrock R.R. Acc. Chem. Res. 2014, 47, 2457-2466. doi: 10.1021/ar500139s
  10. Sinclair F., Alkattan M., Prunet J., Shaver M.P. Polym. Chem. 2017, 8, 3385-3398. doi: 10.1039/C7PY00340D
  11. Leimgruber S., Trimmel G. Monatsh. Chem. 2015, 146, 1081-1097. doi: 10.1007/s00706-015-1501-0
  12. Binder J.B., Raines R.T. Curr. Opin. Chem. Biol. 2008, 12, 767-773. doi: 10.1016/j.cbpa.2008.09.022
  13. Martinez H., Ren N., Matta M.E., Hillmyer M.A. Polym. Chem. 2014, 5, 3507-3532. doi: 10.1039/c3py01787g
  14. Zhang K., Dou Y., Jiang Y., Zhang Z., Li Sh., Cui D. Macromolecules. 2021, 54, 9445-9451. doi: 10.1021/acs.macromol.1c01384
  15. Hillmyer M.A., Laredo W.R., Grubbs R.H. Macromolecules. 1995, 28, 6311-6316. doi: 10.1021/ma00122a043
  16. Han H., Chen F., Yu J., Dang J., Ma Z., Zhang Y., Xie M. J. Polym. Sci. Part A: Polym. Chem. 2007, 45, 3986-3993. doi: 10.1002/pola.22152
  17. Maughon B.R., Grubbs R.H. Macromolecules. 1996, 29, 5765-5769. doi: 10.1021/ma960049i
  18. Demonceau A., Stumpf A.W., Saive E., Noels A.F. Macromolecules. 1997, 30, 3127-3136. doi: 10.1021/ma961040j
  19. Osawa K., Kobayashi S., Tanaka M. Macromolecules. 2016, 49, 8154-8161. doi: 10.1021/acs.macromol.6b01829
  20. Martinez H., Zhang J., Kobayashi S., Xu Y., Pitet L.M., Matta M.E., Hillmyer M.A. Appl. Petrochem. Res. 2015, 5, 19-25. doi: 10.1007/s13203-014-0048-z
  21. Kobayashi S., Fukuda K., Kataoka M., Tanaka M. Macromolecules. 2016, 49, 2493-2501. doi: 10.1021/acs.macromol.6b00273
  22. Denisova Y.I., Roenko A.V., Adzhieva O.A., Gringolts M.L., Shandryuk G.A., Peregudov A.S., Finkelshtein E.Sh., Kudryavtsev Y.V. Polym. Chem. 2020, 11, 7063-7077. doi: 10.1039/d0py01167c
  23. De Geus M.A.R., Groenewold G.J.M., Maurits E., Araman C., Van Kasteren S.I. Chem. Sci. 2020, 11, 10175-10179. doi: 10.1039/D0SC03216F
  24. Revanur R., McCloskey B., Breitenkamp K., Freeman B.D., Emrick T. Macromolecules. 2007, 40, 3624-3630. doi: 10.1021/ma0701033
  25. Breitenkamp R.B., Ou Z., Breitenkamp K., Muthukumar M., Emrick T. Macromolecules. 2007, 40, 7617-7624. doi: 10.1021/ma070714v
  26. Bailey F.E., Koleske J.V. Ullmann's Encyclopedia of Industrial Chemistry. 2000, 29, 355-365. doi: 10.1002/14356007.a21_579
  27. Bond C.W., Cresswell A.J., Davies S.G., Fletcher A.M., Kurosawa W., Lee J.A., Roberts P.M., Russell A.J., Smith A.D., Thomson J.E. J. Org. Chem. 2009, 74, 6735-6748. doi: 10.1021/jo9012783
  28. Ashby E.C., Coleman D. J. Org. Chem. 1987, 52, 4554-4565. doi: 10.1021/jo00229a023
  29. Breitenkamp K., Simeone J., Jin E., Emrick T. Macromolecules. 2002, 35, 9249-9252. doi: 10.1021/ma021094v
  30. Wang J-X., Ge W., Fu M-C., Fu Y. Org. Lett. 2022, 24, 1471-1475. doi: 10.1021/acs.orglett.1c04359

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Russian Academy of Sciences