Synthesis and biological activity of phosphorylated quaternary ammonium salts

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A series of phosphorylated quaternary ammonium salts 2-7 with higher alkyl substituents at the quaternary nitrogen atom was obtained using a two-stage synthesis procedure. Compounds 2-5 were found to exhibit high antimicrobial activity against bacterial strains B. cereus , S. aureus , E. coli , as well as fungi Candida albicans . Compounds 6 and 7 containing hexa- and octadecyl substituents at the nitrogen atom are not active against pathogenic strains of microorganisms. Using the 31Р NMR method, it was proved that the compounds obtained under the action of air moisture are converted into the corresponding phosphorylated betaines.

About the authors

A. M Gayneev

Kazan (Volga Region) Federla University

Email: gajjneev@mail.ru

R. R Davletshin

Kazan (Volga Region) Federla University

Email: gajjneev@mail.ru

I. V Galkina

Kazan (Volga Region) Federla University

Email: gajjneev@mail.ru

N. V Davletshina

Kazan (Volga Region) Federla University

Email: gajjneev@mail.ru

N. O Kuznetsov

Kazan (Volga Region) Federla University

Email: gajjneev@mail.ru

A. N Sedov

Kazan (Volga Region) Federla University

Email: gajjneev@mail.ru

M. P Shulaeva

Kazan State Medical Academy

Email: gajjneev@mail.ru

References

  1. Romani L. Nature Rew. Immunology J. 2004, 4, 11-24. doi: 10.1038/nri1255
  2. Cui S.-F., Ren Yu., Zhang S.-L., Peng X.-M., Damu G.L.V., Geng R.-X., Zhou C.-H. Bioorg. Med. Chem. Lett. 2013, 23, 3267-3272. doi: 10.1016/j.bmcl.2013.03.118
  3. Domagk G. Dtsch. Med. Wochenschr. J. 1935, 61, 829-832. doi: 10.1055/S-0028-1129654
  4. Kwasniewska D., Chen Y.-L., Wieczorek D. Pathogens. 2020, 9, 459-470. doi: 10.3390/pathogens9060459
  5. Morandini A., Leonetti B., Riello P., Sole R., Gatto V., Caligiuri I., Rizzolio F., Beghetto V. ChemMedChem. 2021, 16, 3172-3176. doi: 10.1002/cmdc.202100409
  6. Sapozhnikov S.V., Sabirova A.E., Shtyrlin N.V., Druk A.Y., Agafonova M.N., Chirkova E.V., Kazakova R.R., Grishaev D.Y., Nikishova T.V., Krylova E.S., Nikitina E.V., Kayumov A.R., Shtyrlin Y.G. Eur. J. Med. Chem. 2021, 211, 113100. doi: 10.1016/j.ejmech.2020.113100
  7. Mechken K.A., Menouar M., Belkhodja M., Saidi-Besbes S. J. Mol. Liq. 2021, 338, 116775. doi: 10.1016/j.molliq.2021.116775
  8. Fanfoni L., Marsich E., Turco G., Breschi L., Cadenaro L. Acta Biomater. 2021, 129, 138-147. doi: 10.1016/j.actbio.2021.05.012
  9. Badura A., Krysinski J., Nowaczyk A., Bucinski A. Arab. J. Chem. 2021, 14, 103233. doi: 10.1016/j.arabjc.2021.103233
  10. Pacios O., Blasco L., Bleriot I., Fernandez-Garcia L., Bardanca M.G., Ambroa A., Lopez M., Bou G., Tomas M. Antibiotics. 2020, 9, 65. doi: 10.3390/antibiotics9020065
  11. Salajkova S., Benkova M., Marek J., Sleha R., Prchal L., Malinak D., Dolezal R., Sepcic K., Gunde-Cimerman N., Kuca K., Soukup O. Molecules. 2020, 25, 2254. doi: 10.3390/molecules25092254
  12. Гайнеев А.М., Галкина И.В., Давлетшин Р.Р, Давлетшина Н.В., Кузнецов Н.О., Гришаев Д.Ю., Шулаева М.П., Поздеев О.К. ЖОХ. 2022, 92, 1038-1043. doi: 10.31857/S0044460X2200058
  13. Davletshin R.R., Gayneev A.M., Ermakova E.A., Davletshina N.V., Galkina I.V., Ivshin K.A., Shulaeva M.P., Pozdeev O.K. Mendeleev Commun. 2022, 32, 180-182. doi: 10.1016/j.mencom.2022.03.009
  14. Gayneev A., Davletshin R., Galkina I., Davletshina N., Sedov A., Mirkhuzina M., Kuchaev E., Islamov D. Phosphorus, Sulfur, Silicon, Relat. Elem. 2022, 197, 654-656 doi: 10.1080/10426507.2021.2021527
  15. Давлетшин Р.Р., Гайнеев А.М., Давлетшина Н.В., Галкина И.В., Ившин К.А., Шулаева М.П. ЖОрХ. 2022, 58, 806-812. doi: 10.31857/S0514749222080043

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Russian Academy of Sciences