Biologically active symmetric and asymmetric dicationic bis-isatinhydrazones: which is better - complicing or simplifying the structure of the spacer?

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The interaction of bis-isatins containing a 1,-ω-alkylene, arylene, or alkyluracil spacer with ammonium acetohydrazides yielded a series of dicationic isatin-3-acylhydrazones with symmetric and asymmetric structures. It was shown that the antimicrobial activity of the new compounds depends on the structure of the spacer and the nature of the substituent in the aromatic fragment. Derivatives based on 5-substituted isatins, in which heterocyclic fragments are linked by an alkylene chain of 9 and 10 carbon atoms, exhibit a bactericidal effect against resistant strains of Staphylococcus aureus at the level of norfloxacin and the pathogen fungus P. cactorum , which causes plant late blight.

About the authors

A. V. Bogdanov

A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences

Email: abogdanov@inbox.ru

A. D. Voloshina

A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences

S. K. Amerkhanova

A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences

A. P. Lyubina

A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences

O. M. Tsivileva

Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS)

R. R. Rakhmatullin

Kazan national research technological university

V. F. Mironov

A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences

References

  1. Smith M. Science. 2022, 37, 820-821. doi: 10.1126/science.abn8327
  2. Nudelman A. Curr. Med. Chem. 2022, 29, 2751-2845. doi: 10.2174/0929867328666210810124159
  3. Menezes J.C.J.M.D.S., Diederich M.F. Eur. J. Med. Chem. 2019, 182, Art. No. 111637. doi: 10.1016/j.ejmech.2019.111637
  4. Iwaki T., Oyama Y., Tomoo T., Tanaka T., Okamura Y., Sugiyama M., Yamaki A., Furuya M. Bioorg. Med. Chem. 2017, 25, 1762-1769. doi: 10.1016/j.bmc.2017.01.026
  5. Bancet A., Raingeval C., Lomberget Th., Le Borgne M., Guichou J.-F., Krimm I. J. Med. Chem. 2020, 63, 11420-11435. doi: 10.1021/acs.jmedchem.0c00242
  6. Bedwell E.V., McCarthy W.J., Coyne A.G., Abell Ch. Chem Biol. Drug Des. 2022, 100, 469-486. doi: 10.1111/cbdd.14120
  7. Drapier Th., Geubelle P., Bouckaert Ch., Nielsen L., Laulumaa S., Goffin E., Dilly S., Francotte P., Hanson Ju., Pochet L., Kastrup J.S., Pirotte B. J. Med. Chem. 2018, 61, 5279-5291. doi: 10.1021/acs.jmedchem.8b00250
  8. Paquin A., Reyes-Moreno C., Berube G. Molecules. 2021, 26, Atr. No. 2340. doi: 10.3390/molecules26082340
  9. Li Sh., Shan X., Wang Yu., Chen Q., Sun J., He Zh., Sun B., Luo C. J. Control. Release. 2020, 326, 510-522. doi: 10.1016/j.jconrel.2020.07.036
  10. Zhang Y.-Zh., Du H.-Zh., Liu H.-L., He Q.-S., Xu Zh. Arch. Pharm. Chem. Life. Sci. 2020, 353, art. no. e1900299. doi: 10.1002/ardp.201900299
  11. Chauhan G., Pathak Dh.P., Ali F., Bhutani R., Kapoor G., Khasimbi Sh. Curr. Org. Synth. 2020, 17, 1-38. doi: 10.2174/1570179417666200924150907
  12. Yakan H., Cavus M.S., Zengin Kurt B., Muglu H., Sonmez F., Guzel E. J. Mol. Struct. 2021, 1239, art. no. 130495. doi: 10.1016/j.molstruc.2021.130495
  13. Guo H., Eur. J. Med. Chem. 2019, 164, 678-688. doi: 10.1016/j.ejmech.2018.12.017
  14. Gao F., Wang T., Gao M., Zhang X., Liu Zh., Zhao Sh., Lv Z., Xiao J. Eur. J. Med. Chem. 2019, 165, 323-331. doi: 10.1016/j.ejmech.2019.01.042
  15. Ma T., Chen R., Xue H., Miao Zh., Chen L., Zhang H., Shi X. J. Heterocycl. Chem. 2020, 57, 503-509. doi: 10.1002/jhet.3781
  16. Chen X., Zhu H., Bao K., Jiang L., Zhu H., Ying M., He Q., Yang B., Sheng R., Cao J., Acta Pharm. Sin. 2021, 42, 1160-1170. doi: 10.1038/s41401-020-00600-5
  17. Althagafi I.I., Abouzied A.S., Farghly T.A., Al-Qurashi N. T., Alfaifi M.Y., Shaaban M.R., Aziz M.R.A. J. Heterocycl. Chem. 2019, 56, 391-399. doi: 10.1002/jhet.3410
  18. Xu Y., Guan J.G., Xu Z., Zhao S.J. Fitoterapia. 2018, 127, 383-386. doi: 10.1016/j.fitote.2018.03.018
  19. Hu Y.-Q., Song X.-F., Fan J. J. Heterocyclic Chem. 2018, 55, 265-268. doi: 10.1002/jhet.3042
  20. Singh A., Nisha T.B., Hahn H.J., Liu N., Tam C., Cheng L.W., Kim J., Debnath A., Land K.M., Kumar V. Med. Chem. Commun. 2017, 8, 1982-1992. doi: 10.1039/C7MD00434F
  21. Guo H., Diao Q.-P. Curr. Top. Med. Chem. 2020, 20, 1499-1503. doi: 10.2174/1568026620666200310124416
  22. Cheng R., Yan X., Xu Z. J. Heterocycl. Chem. 2019, 56, 2970-2974. doi: 10.1002/jhet.3689
  23. Wang R., Yin X., Zhang Y., Zhang T., Shi W. J. Heterocycl. Chem. 2018, 55, 3001-3005. doi: 10.1002/jhet.3341
  24. Fan Y.L., Huang Z.P., Liu M. J. Heterocycl. Chem. 2018, 55, 2990-2995. doi: 10.1002/jhet.3330
  25. Singh P., Sharma P., Anand A., Bedi P.M.S., Kaur T., Saxena A.K., Kumar V. Eur. J. Med. Chem. 2012, 55, 455-461. doi: 10.1016/j.ejmech.2012.06.057
  26. Kumar K., Sagar S., Esau L., Kaur M., Kumar V. Eur. J. Med. Chem. 2012, 58, 153-159. doi: 10.1016/j.ejmech.2012.10.008
  27. Wang R., Yin X., Zhang Y., Yan W. Eur. J. Med. Chem. 2018, 156, 580-586. doi: 10.1016/j.ejmech.2018.07.025
  28. Guo H. J. Heterocycl. Chem. 2018, 55, 1899-1905. doi: 10.1002/jhet.3226
  29. Wang H.D., Fan Y.L., Zhou J., Xu Y., Guan J.G. J. Heterocycl. Chem. 2018, 55, 1991-1996. doi: 10.1002/jhet.3227
  30. Kumar K., Liu N., Yang D., Na D., Thompson J., Wrischnik L.A., Land K.M., Kumar V. Bioorg. Med. Chem. 2015, 23, 5190-5297. doi: 10.1016/j.bmc.2015.04.075
  31. Dan W., Gao J., Qi X., Wang J., Dai J. Eur. J. Med. Chem. 2022, 243, Art. No. 114765. doi: 10.1016/j.ejmech.2022.114765
  32. Vereshchagin A.N., Frolov N.A., Egorova K.S., Seitkalieva M.M., Ananikov V.P. Int. J. Mol. Sci. 2021, 22, Art. No. 6793. doi: 10.3390/ijms22136793
  33. Shamsuri A.A., Jamil S.N.A.M. Appl. Sci. 2021, 11, Art. No. 3167. doi: 10.3390/app11073167
  34. Osimitz T.G., Droege W. Toxicol. Res. Appl. 2021, 5, art. no. 239784732110490. doi: 10.1177/23978473211049085
  35. Morrison K.R., Allen R.A., Minbiole K.P.C., Wuest W.M. Tetrahedron Lett. 2019, 60, art. no. 150935. doi: 10.1016/j.tetlet.2019.07.026
  36. Богданов А.В., Кадомцева М.Е., Бухаров С.В., Волошина А.Д., Миронов В.Ф. ЖОрХ. 2020, 56, 488-491.
  37. Bogdanov A.V., Kadomtseva M.E., Bukharov S.V., Voloshina A.D., Mironov V.F. Russ. J. Org. Chem. 2020, 56, 555-558. doi: 10.1134/S107042802003032X
  38. Pashirova T.N., Bogdanov A.V., Zaripova I.F., Burilova E.A., Vandyukov A.E., Sapunova A.S., Vandyukova I.I., Voloshina A.D., Mironov V.F., Zakharova L.Ya. J. Mol. Liq. 2019, 290, art. no. 111220. doi: 10.1016/j.molliq.2019.111220
  39. Bogdanov A.V., Zaripova I.F., Voloshina A.D., Sapunova A.S., Kulik N.V., Voronina Ju.K., Mironov V.F. Chem. Biodiversity. 2018, 15, art. no. 1800088. doi: 10.1002/cbdv.201800088
  40. Pashirova T.N., Shaihutdinova Z.M., Vandyukov A.E., Voloshina A.D., Samorodov A.V., Pavlov V.N., Souto E.B., Mironov V.F., Bogdanov A.V. J. Mol. Liq. 2022, 365, art. no. 120217. doi: 10.1016/j.molliq.2022.120217
  41. Богданов А.В., Волошина А.Д., Любина А.П., Амерханова С.К., Калинина Т.А., Глухарева Т.В., Миронов В.Ф. ЖОрХ. 2022, 58, 777-786.
  42. Bogdanov A.V., Voloshina A.D., Lyubina A.P., Amerkhanova S.K., Kalinina T.A., Glukhareva T.V., Mironov V.F. Russ. J. Org. Chem. 2022, 58, 777-786. doi: 10.1134/S1070428022080012
  43. Богданов А.В., Сиразиева А.Р., Волошина А.Д., Абзалилов Т.А., Самородов А.В., Миронов В.Ф. ЖОрХ. 2022, 58, 317-325.
  44. Bogdanov A.V., Sirazieva A.R., Voloshina A.D., Abzalilov T.A., Samorodov A.V., Mironov V.F. Russ. J. Org. Chem. 2022, 58, 327-334. doi: 10.1134/S1070428022030101
  45. Bogdanov A., Tsivileva O., Voloshina A., Lyubina A., Amerhanova S., Burtceva E., Bukharov S., Samorodov A., Pavlov V. ADMET DMPK. 2022, 10, 163-179. doi: 10.5599/admet.1179
  46. Bogdanov A.V., Voloshina A.D., Sapunova A.S., Kulik N.V., Bukharov S.V., Dobrynin A.B., Voronina Ju.K., Terekhova N.V., Samorodov A.V., Pavlov V.N., Mironov V.F. Chem. Biodiversity. 2022, 19, art. no. e202100496. doi: 10.1002/cbdv.202100496
  47. Богданов А.В., Зарипова И.Ф., Мустафина Л.К., Волошина А.Д., Сапунова А.С., Кулик Н.В., Миронов В.Ф., ЖОХ. 2019, 89, 1004-1012.
  48. Bogdanov A.V., Zaripova I.F., Mustafina L.K., Voloshina A.D., Sapunova A.S., Kulik N.V., Mironov V.F. Russ. J. Gen. Chem. 2019, 89, 1368-1376. doi: 10.1134/S107036321907003X
  49. Волошина А.Д., Семенов В.Э., Стробыкина А.С., Кулик Н.В., Крылова Е.С., Зобов В.В., Резник В.С. Биоорг. хим. 2017, 43, 197-204.
  50. Voloshina, A.D., Semenov V.E., Strobykina A.S., Kulik N.V., Krylova E.S., Zobov V.V., Reznik V.S. Russ. J. Bioorg. Chem. 2017, 43, 170-176. doi: 10.1134/S1068162017020170
  51. Семенов В.Э., Волошина А.Д., Кулик Н.В., Уралева С.Ю., Гиниятуллин Р.Х., Михайлов А.С., Акамсин В.Д., Ефремов Ю.Я., Резник В.С. Хим.-фарм. Ж. 2009, 23, 21-26.
  52. Semenov V.E., Voloshina A.D., Kulik N.V., Uraleva S.Yu., Giniyatullin R.Kh., Mikhailov A.S., Akamsin V.D., Efremov Yu.Ya., Reznik V. S. Pharm. Chem. J. 2009, 43, 448-453. doi: 10.1007/s11094-009-0331-y
  53. Зобов В.В., Аслямова А.А., Березинский Л.А., Резник В.С., Акамсин В.Д., Галяметдинова И.В., Гиниятуллин Р.Х., Нафикова А.А., Латыпов Ш.К. Хим.-фарм. ж. 2005, 39, 15-19.
  54. Zobov V.V., Aslyamova A.A., Berezinskii L.A., Reznik V.S., Akamsin V.D., Galyametdinova I.V., Giniyatullin R.H., Nafikova A.A., Latypov Sh.K. Pharm. Chem. J. 2005, 39, 239-244. doi: 10.1007/s11094-005-0125-9
  55. Semenov V.E., Zueva I.V., Mukhamedyarov M.A., Lushchekina S.V., Petukhova E.O., Gubaidullina L.M., Krylova E.S., Saifina L.F., Lenina O.A., Petrov K.A. Molecules. 2020, 25, Art. No. 4191. doi: 10.3390/molecules25184191
  56. Naclerio G.A., Sintim H.O. Future Med. Chem. 2020, 12. doi: 10.4155/fmc-2020-0046
  57. Fisher J.F., Mobashery Sh. Protein Science. 2020, 29, 629-646. doi: 10.1002/pro.3737
  58. Bush K. Ann. N.Y. Acad. Sci. 2013, v-vii, art. no. 1277. doi: 10.1111/nyas.12025
  59. Zhou J., Cai Y., Liu Y., An H., Deng K., Awais Ashraf M., Zou L., Wang Ju. Front. Microbiol. 2022, 13, art. no. 952633. doi: 10.3389/fmicb.2022.952633
  60. Epand R.M., Walker Ch., Epand R.F., Magarvey N.A. Biochim. Biophys. Acta. 2016, 1858, 980-987. doi: 10.1016/j.bbamem.2015.10.018
  61. Van Hamme J.D., Singh A., Ward O.P. Biotechnol. Adv. 2006, 24, 604-620. doi: 10.1016/j.biotechadv.2006.08.001
  62. Desbois A.P., Smith V.J. Appl. Microbiol. Biotechnol. 2009, 85, 1629-1642. doi: 10.1007/s00253-009-2355-3 10.1007/s00253-009-2355-3
  63. Ayoup M.S., Wahby Ya., Abdel-Hamid H., Ramadan E.S., Teleb M., Abu-Serie M.M., Noby A. Eur. J. Med. Chem. 2019, 168, 340-356. doi: 10.1016/j.ejmech.2019.02.051
  64. Abd-El-Khair H., Abdel-Gaied T.G., Mikhail M.S., Abdel-Alim A.I., El-Nasr H.I.S. Bull. Nat. Res. Centre. 2021, 45, Art. No. 37. doi: 10.1186/s42269-021-00491-4
  65. Huang X., Ren J., Li P., Feng S., Dong P., Ren M. J. Sci. Food Agriculture. 2021, 101, 1744-1757. doi: 10.1002/jsfa.10829
  66. Ragasova L., Penazova E., Gazdik F., Pecenka J., Cechova J., Pokluda R., Baranek M., Grzebelus D., Eichmeier A. Agronomy. 2020, 10, art. no. 443. doi: 10.3390/agronomy10030443
  67. Ray M., Ray A., Dash S., Mishra A., Achary K.G., Nayak S., Singh S. Biosensors Bioelectronics. 2017, 87, 708-723. doi: 10.1016/j.bios.2016.09.032
  68. Wang T., Gao C., Cheng Y., Li Z., Chen J., Guo L., Xu J. Plants. 2020, 9, art. no. 769. doi: 10.3390/plants9060769
  69. Mastanjevic K., Krstanovic V., Mastanjevic K., Sarkanj B. Fermentation. 2018, 4, art. no. 3. doi: 10.3390/fermentation4010003
  70. Han J.-H., Park G.-C., Kim K.S. Mycobiology. 2017, 45, 370-378. doi: 10.5941/MYCO.2017.45.4.370
  71. Chudinova E.M., Platonov V.A., Alexandrova A.V., Elansky S.N. Plant Protection News. 2020, 103, 192-196. doi: 10.31993/2308-6459-2020-103-3-13431
  72. Monteiro A., Cardoso J., Guerra N., Ribeiro E., Viegas C., Cabo Verde S., Sousa-Uva A. Applied Sci. 2022, 12, art. no. 1958. doi: 10.3390/app12041958
  73. Lim B., Cheng Y., Kato T., Pham A.T., Le Du E., Mishra A.K., Grinhagena E., Moreau D., Sakai N., Waser J., Matile S. Helv. Chim. Acta. 2021, 104, art. no. e2100085. doi: 10.1002/hlca.202100085
  74. Beluzan F., Miarnau X., Torguet L., Armengol J., Abad-Campos P. Agriculture. 2022, 12, art. no. 294. doi: 10.3390/agriculture12020294
  75. Dron N., Simpfendorfer S., Sutton T., Pengilley G., Hobson K. Agronomy. 2022, 12, art. no. 89. doi: 10.3390/agronomy12010089
  76. Bogdanov A.V., Zaripova I.F., Voloshina A.D., Sapunova A.S., Kulik N.V., Tsivunina I.V., Dobrynin A.B., Mironov V.F. J. Fluor. Chem. 2019, 227, art. no. 109345. doi: 10.1016/j.jfluchem.2019.109345
  77. Bashkar M., Bavadi M., Ghaderi E., Niknam Kh. Mol. Divers. 2021, 25, 2001-2015. doi: 10.1007/s11030-020-10091-5
  78. Месропян Э.Г., Амбарцумян Г.Б., Аветисян А.А., Саркисян М.Г., Амазаспян Г.С. ЖОрХ. 2001, 37, 1545-1546.
  79. Mesropyan E.G., Ambartsumyan G.B., Avetisyan A.A., Sarkisyan M.G., Amazaspyan G.S. Russ. J. Org. Chem. 2001, 37, 1476-1477. doi: 10.1023/A:1013412330472
  80. Резник В.С., Салихов И.Ш., Швецов Ю.С., Иванов Б.Е. Изв. АН СССР. Сер. Хим. 1980, 11, 2568-2574.
  81. Reznik V.S., Salikhov, I.Sh., Shvetsov Yu.S., Ivanov B.E. Izv. Akad. Nauk SSSR, Ser. Khim. 1980, 11, 2568-2574.
  82. National Committee for Clinical Laboratory Standards, Methods for dilution antimicrobial susceptibility. Tests for bacteria that grow aerobically. 6th Ed., approved standard, M7-A5, NCCLS, Wayne, 2000.
  83. Pane C., Caputo M., Francese G., Manganiello G., Lo Scalzo R., Mennella G., Zaccardelli M. Biology. 2020, 9, art. no. 270. doi: 10.3390/biology9090270
  84. Moreno-Gavira A., Dianez F., Sanchez-Montesinos B., Santos M. J. Fungi. 2021, 7, art. no. 415. doi: 10.3390/jof7060415

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Russian Academy of Sciences