New methods of synthesis of annealed maleimides

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This review covers the new synthetic methods for annealed maleimide derivatives, namely pyrrolo[3,4-b]-pyrrolo-4,6(1H,5H)-diones, 4H-thieno[2,3-c]-pyrrolo-4,6(5H)-diones, 4H-pyrrolo[3,4-d]thiazole-4,6(5H)-diones, 5H-pyrrolo-[3,4-b]pyridine-5,7(6H)-diones, 1H-pyrrolo-[3,4-c]pyridine-1,3(2H)-diones, and other related compounds. The publications for the last 10 years are considered, including the methods for de novo synthesis of the maleimide core and the ones which use N-substituted maleimide or halogen-substituted maleimide derivatives as the main precursor.

About the authors

A. A. Panov

Gause Institute of New Antibiotics

Author for correspondence.
Email: 7745243@mail.ru
ORCID iD: 0000-0002-6654-4081
Russian Federation, Moscow

References

  1. Cappuccino C., Catalano L., Marin F., Dushaq G., Raj G., Rasras M., Rezgui R., Zambianchi M., Melucci M., Naumov P., Maini L. Cryst. Growth Des. 2020, 20, 884–891. doi: 10.1021/acs.cgd.9b01281
  2. Cappuccino C., Canola S., Montanari G., Lopez S. G., Toffanin S., Melucci M., Negri F., Maini L. Cryst. Growth Des. 2019, 19, 2594–2603. doi: 10.1021/acs.cgd.8b01712
  3. Chen K., Xie H., Jiang K., Mao J. Chem. Phys. Lett. 2016, 657, 135–141. doi: 10.1016/j.cplett.2016.05.069
  4. Benz S., Lopez-Andarias J., Mareda J., Sakai N., Matile S. Angew. Chem., Int. Ed. 2017, 56, 812–815. doi: 10.1002/anie.201611019
  5. Caruso M., Petroselli M., Cametti M. ChemistrySelect 2021, 6, 12975–12980. doi: 10.1002/slct.202103792
  6. Imoto H., Fujii R., Naka K. Eur. J. Org. Chem. 2018, 837–843. doi: 10.1002/ejoc.201701479
  7. Danilenko V.N., Simonov AY., Lakatosh S. A., Kubbutat M. H.G., Totzke F., Schachtele C., Elizarov S. M., Bekker O. B., Printsevskaya S. S., Luzikov Y. N., Reznikova M. I., Shtil A. A., Preobrazhenskaya M. N. J. Med. Chem. 2008, 51, 7731–7736. doi: 10.1021/jm800758s
  8. Vandyshev D.Y., Shikhaliev K. S. Molecules. 2022, 27, 5268. doi: 10.3390/molecules27165268
  9. Chung C.-Y., Tseng C.-C., Li S.-M., Tsai S.-E., Lin H.-Y., Wong F. F. Molecules 2021, 26, 2907. doi: 10.3390/molecules26102907
  10. Panov A.A., Simonov A. Y., Lavrenov S. N., Lakatosh S. A., Trenin A. S. Chem. Heterocycl. Compd. 2018, 54, 103–113. doi: 10.1007/s10593–018–2240-z
  11. Volvoikar P., Torney P., Tetrahedron 2021, 82, 131756. doi: 10.1016/j.tet.2020.131756
  12. Bansal M., Upadhyay C., Poonam; Rathi S. K.B. RSC Med. Chem. 2021, 12, 1854–1867. doi: 10.1039/D1MD00244A
  13. Das S. New J. Chem. 2021, 45, 20519–20536. doi: 10.1039/D1NJ03924E
  14. Ershov O.V., Ershova A. I. Chem. Heterocycl. Compd. 2020, 56, 518–520. doi: 10.1007/s10593–020–02693–6
  15. Kavitha K., Praveena K. S.S., Ramarao E. V.V.S., Murthy N. Y.S., Pal S. Curr. Org. Chem. 2016, 20, 1955–2001. doi: 10.2174/1385272820666160530145014
  16. Mikie T., Okamoto K., Iwasaki Y., Koganezawa T., Sumiya M., Okamoto T., Osaka I. Chem. Mater. 2022, 34, 2717–2729. doi: 10.1021/acs.chemmater.1c04196
  17. Kobayashi K., Kunimura R., Kogen H. Molecules 2019, 24, 4230. doi: 10.3390/molecules24234230
  18. Caruso M., Petroselli M., Cametti M. ChemistrySelect 2021, 6, 12975–12980. doi: 10.1002/slct.202103792
  19. Khitrov M.D., Platonov D. N., Belyy A. Yu., Trainov K. P., Velmiskina J. A., Medvedev M. G., Salikov R. F., Tomilov Y. V. Dyes Pigm. 2022, 203, 110344. doi: 10.1016/j.dyepig.2022.110344
  20. Kumar A., Banerjee S., Roy P., Sondhi S. M., Sharma A. Bioorg. Med. Chem. Lett. 2017, 27, 501–504. doi: 10.1016/j.bmcl.2016.12.031
  21. Yin Z., Shi W., Wu X.-F. J. Org. Chem 2023, 88, 4975–4994. doi: 10.1021/acs.joc.2c00655
  22. Kang C., Xu J., Li X., Wang S., Jiang G., Ji F. J. Org. Chem. 2022, 87, 10390–10397. doi: 10.1021/acs.joc.2c00673
  23. Ram S., Mehara P., Kumar A., Sharma A. K., Chauhan A. S., Kumar A., Das P. Mol. Catal. 2022, 530, 112606. doi: 10.1016/j.mcat.2022.112606
  24. Wang Y., Zhou Y., Lei M., Hou J., Jin Q., Guo D., Wu W. Tetrahedron 2019, 75, 1180–1185. doi: 10.1016/j.tet.2019.01.023
  25. Fu L.-Y., Ying J., Wu X.-F. J. Org. Chem. 2019, 84, 12648–12655. doi: 10.1021/acs.joc.9b01890
  26. Panda B., Albano G. Catalysts 2021, 11, 1531. doi: 10.3390/catal11121531
  27. Zeng L., Li H., Tang S., Gao X., Deng Y., Zhang G., Pao C.-W., Chen J.-L., Lee J.-F., Lei A. ACS Catal. 2018, 8, 5448–5453. doi: 10.1021/acscatal.8b00683
  28. Barsu N., Kalsia D., Sundararaju B. Catal. Sci. Technol. 2018, 8, 5963–5969. doi: 10.1039/C8CY02060D
  29. Chen L.-P., Chen J.-F., Zhang Y.-J., He X.-Y., Han Y.-F., Xiao Y.-T., Lv G.-F., Lu X., Teng F., Sun Q., Li J.-H. Org. Chem. Front. 2021, 8, 6067–6073. doi: 10.1039/D1QO01147B
  30. Takacs A., Varga G. M., Kardos J., Kollar L. Tetrahedron 2017, 73, 2131–2138. doi: 10.1016/j.tet.2017.02.062
  31. Favaretto L., Zambianchi M., Lopez S. G., Mazzanti A., Zanardi C., Seeber R., Gentili D., Valle F., Benvenuti E., Muccini M., Ruani G., Mercuri F., Milita S., Liscio F., Cavallini M., Toffanin S., Melucci M. J. Mater. Chem. C. 2017, 5, 10320–10331. doi: 10.1039/C7TC03930A
  32. Ikai T., Kudo T., Nagaki M., Yamamoto T., Maeda K., Kanoh S. Polymer. 2014, 55, 2139–2145. doi: 10.1016/j.polymer.2014.03.021
  33. Maini L., Gallino F., Zambianchi M., Durso M., Gazzano M., Rubini K., Gentili D., Manet I., Muccini M., Toffanin S., Cavallini M., Melucci M. Chem. Commun. 2015, 51, 2033–2035. doi: 10.1039/C4CC09177A
  34. Punzi A., Coppi D. I., Matera S., Capozzi M. A.M., Operamolla A., Ragni R., Babudri F., Farinola G. M. Org. Lett. 2017, 19, 4754–4757. https://doi.org/10.1021/acs.orglett.7b02114
  35. Warnan J., Labban A. E., Cabanetos C., Hoke E. T., Shukla P. K., Risko C., Bredas J.-L., McGehee M.D., Beaujuge P. M. Chem. Mater. 2014, 26, 2299–2306. doi: 10.1021/cm500172w
  36. Shi W., Sun S., Hu Y., Gao T., Peng Y., Wu M., Guo H., Wang J., Tetrahedron Lett. 2015, 56, 3861–3863. doi: 10.1016/j.tetlet.2015.04.097
  37. Dagoneau D., Kolleth A., Lumbroso A., Tanriver G., Catak S., Sulzer-Mosse S., De Mesmaeker A. Helv. Chim. Acta 2019, 102, e19000. doi: 10.1002/hlca.201900031
  38. Katritzky A.R., Fan W.-Q. J. Heterocycl. Chem. 1988, 25, 901–906. doi: 10.1002/jhet.5570250338
  39. Kharitonova O.V., Solomentseva T. A., Golubtsov I. S., Mironov A. F. Russ. J. Org. Chem. 2014, 50, 45–47. doi: 10.1134/S1070428014010084
  40. Huang H.-M., Li Y.-J., Ye Q., Yu W.-B., Han L., Jia J.-H., Gao J.-R. J. Org. Chem. 2014, 79, 1084–1092. doi: 10.1021/jo402540j
  41. Koohgard M., Hosseinpour Z., Hosseini-Sarvari M. Tetrahedron 2021, 89, 132166. doi: 10.1016/j.tet.2021.132166
  42. Wang L., Ma T., Qiao M., Wu Q., Shi D., Xiao W. Synthesis 2019, 51, 522–529. doi: 10.1055/s-0037–1610907
  43. Fujiya A., Tanaka M., Yamaguchi E., Tada N., Itoh A. J. Org. Chem. 2016, 81, 7262–7270. doi: 10.1021/acs.joc.6b00439
  44. Firoozi S., Hosseini-Sarvari M., Koohgard M. Green Chem. 2018, 20, 5540–5549. doi: 10.1039/C8GC03297A
  45. Xu Y.-W., Wang J., Wang G., Zhen L. J. Org. Chem. 2021, 86, 91–102. doi: 10.1021/acs.joc.0c01567
  46. Nekkanti S., Kumar N. P., Sharma P., Kamal A., Nachtigall F. M., Forero-Doria O., Santos L. S., Shankaraiah N. RSC Adv. 2016, 6, 2671–2677. doi: 10.1039/C5RA24629F
  47. Wang Q., Yuan T., Liu Q., Xu Y., Xie G., Lv X., Ding S., Wang X., Li C. Chem. Commun. 2019, 55, 8398–8401. doi: 10.1039/C9CC04336E
  48. Zhang Q., Wang B., Ma H., Ablajan K. New J. Chem. 2019, 43, 17000–17003. doi: 10.1039/C9NJ03076J
  49. Zhou K., Bao M., Huang J., Kang Z., Xu X., Hu W., Qian Y. Org. Biomol. Chem. 2020, 18, 409–414. doi: 10.1039/C9OB02571E
  50. Zhu J.-N., Wang W.-K., Jin Z.-H., Wang Q.-K., Zhao S.-Y. Org. Lett. 2019, 21, 5046–5050. doi: 10.1021/acs.orglett.9b01641
  51. Lv K.-H., Zhao Q.-S., Zhao K.-H., Yang J.-M., Yan S.-J. J. Org. Chem. 2022, 87, 15301–15311. doi: 10.1021/acs.joc.2c01879
  52. Chupakhin E., Bakulina O., Dar’in D., Krasavin M. Tetrahedron Lett. 2021, 85, 153467. doi: 10.1016/j.tetlet.2021.153467
  53. Zhu J.-N., Chen L.-L., Zhou R.-X., Li B., Shao Z.-Y., Zhao S.-Y. Org. Lett. 2017, 19, 6044–6047. doi: 10.1021/acs.orglett.7b02670
  54. Li H., Zhang S., Feng X., Yu X., Yamamoto Y., Bao M. Org. Lett. 2019, 21, 8563–8567. doi: 10.1021/acs.orglett.9b03107
  55. Botes D.S., Khorasani S., Duminy W., Levendis D. C., Fernandes M. A., Cryst. Growth Des. 2020, 20, 291–299. doi: 10.1021/acs.cgd.9b01167
  56. Yang Z.-H., Tan H.-R., An Y.-L., Zhao Y.-W., Lin H.-P., Zhao S.-Y. Adv. Synth. Catal. 2018, 360, 173–179. doi: 10.1002/adsc.201700955
  57. Li X., Zhang X., Zhang F., Luo X., Luo H. Adv. Synth. Catal. 2022, 364, 1683–1688. doi: 10.1002/adsc.202200251
  58. Zhang Y., Jiang W., Bao X., Qiu Y., Yuan Y., Yang C., Huo C. Chin. J. Chem. 2021, 39, 3238–3244. doi: 10.1002/cjoc.202100401
  59. Lossouarn A., Renault K., Bailly L., Frisby A., Le Nahenec-Martel P., Renard P.-Y., Sabot C., Org. Biomol. Chem. 2020, 18, 3874–3887. doi: 10.1039/D0OB00403K
  60. Klyuchko S.V., Chumachenko S. A., Shablykin O. V., Brovarets V. S. Russ. J. Gen. Chem. 2021, 91, 348–356. doi: 10.1134/S1070363221030026
  61. Zhang X., Dhawan G., Muthengi A., Liu S., Wang W., Legrisa M., Zhang W. Green Chem. 2017, 19, 3851–3855. doi: 10.1039/C7GC01380A
  62. Zhao H., Wang T., Qing Z., Zhai H. Chem. Commun. 2020, 56, 5524–5527. doi: 10.1039/D0CC01582B
  63. Pati B.V., Sagara P. S., Ghosh A., Mohanty S. R., Ravikumar P. C. J. Org. Chem. 2021, 86, 6551–6565. doi: 10.1021/acs.joc.1c00367
  64. Shinde V. N., Rangan K., Kumar D., Kumar A. J. Org. Chem. 2021, 86, 2328–2338. doi: 10.1021/acs.joc.0c02467
  65. Li B., Guo C., Shen N., Zhang X., Fan X. Org. Chem. Front. 2020, 7, 3698–3704. doi: 10.1039/D0QO01109F
  66. Lavrard H., Rodriguez F., Delfourne E., Bioorg. Med. Chem. 2014, 22, 4961–4967. doi: 10.1016/j.bmc.2014.06.028
  67. Lavrard H., Salvetti B., Mathieu V., Rodriguez F., Kiss R. Delfourne E. ChemMedChem 2015, 10, 607–609. doi: 10.1002/cmdc.201500025
  68. Salvetti B., Lavrard H., Delfourne E., Tetrahedron Lett. 2014, 55, 6463–6464. doi: 10.1016/j.tetlet.2014.10.002
  69. He J., Bai Z.-Q., Yuan P.-F., Wu L.-Z., Liu Q. ACS Catal. 2021, 11, 446–455. doi: 10.1021/acscatal.0c05005
  70. Aknin K., Bontemps A., Farce A., Merlet E., Belmont P., Helissey P., Chavatte P., Sari M.-A., Giorgi-Renault S., Desbene-Finck S. J. Enzyme Inhib. Med. Chem. 2022, 37, 252–268. doi: 10.1080/14756366.2021.2001806
  71. Jiang Y.-H., Xiao M., Yan C.-G. RSC Adv. 2016, 6, 35609–35616. doi: 10.1039/C6RA03165J
  72. Xiao M., Jiang Y.-H., Yan C.-G. ChemistrySelect 2017, 2, 2803–2806. doi: 10.1002/slct.201602042
  73. Xiao M., Sun Q., Sun J., Yan C.-G. Eur. J. Org. Chem. 2017, 46, 6861–6866. doi: 10.1002/ejoc.201701356
  74. Jiang Y., Yan C. Chin. J. Chem. 2016, 34, 1255–1262. doi: 10.1002/cjoc.201600504
  75. Du F., Li S.-J., Jiang K., Zeng R., Pan X.-C., Lan Y., Chen Y.-C., Wei Y., Angew. Chem., Int. Ed. 2020, 59, 23755–23762. doi: 10.1002/anie.202010752
  76. Zhao J., Chen M., Wu M., Shi L., Li H. Asian J. Org. Chem. 2022, 11, e202200042. doi: 10.1002/ajoc.202200042
  77. Singh B., Bhatia R., Pani B., Gupta D. J. Mol. Struct. 2020, 1200, 127084. doi: 10.1016/j.molstruc.2019.127084
  78. Zhang Z., Wang S., Hu C., Ma N., Zhang G., Liu Q. Tetrahedron 2018, 74, 7472–7479. doi: 10.1016/j.tet.2018.11.023
  79. Vepreva A., Kantin G., Krasavin M., Dar’in D. Synthesis 2022, 54, 5128–5138. doi: 10.1055/s-0037–1610790
  80. Inyutina A., Kantin G., Dar’in D., Krasavin M. J. Org. Chem. 2021, 86, 13673–13683. doi: 10.1021/acs.joc.1c01710
  81. Laha D., Meher K. B., Bankar O. S., Bhat R. G. Asian J. Org. Chem. 2022, 11, e202200062. doi: 10.1002/ajoc.202200062
  82. Inyutina A., Dar’in D., Kantina G., Krasavin M. Org. Biomol. Chem. 2021, 19, 5068–5071. doi: 10.1039/D1OB00773D
  83. Brenet S., Baptiste B., Philouze C., Berthiol F., Einhorn J. Eur. J. Org. Chem. 2013, 2013, 1041–1045. doi: 10.1002/ejoc.201201525
  84. Brenet S., Berthiol F., Einhorn J. Eur. J. Org. Chem. 2013, 2013, 8094–8096. doi: 10.1002/ejoc.201301329

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences