New methods of synthesis of annealed maleimides
- Authors: Panov A.A.1
-
Affiliations:
- Gause Institute of New Antibiotics
- Issue: Vol 60, No 4 (2024)
- Pages: 403-417
- Section: Articles
- URL: https://aspvestnik.ru/0514-7492/article/view/672149
- DOI: https://doi.org/10.31857/S0514749224040014
- EDN: https://elibrary.ru/RZSIUO
- ID: 672149
Cite item
Abstract
This review covers the new synthetic methods for annealed maleimide derivatives, namely pyrrolo[3,4-b]-pyrrolo-4,6(1H,5H)-diones, 4H-thieno[2,3-c]-pyrrolo-4,6(5H)-diones, 4H-pyrrolo[3,4-d]thiazole-4,6(5H)-diones, 5H-pyrrolo-[3,4-b]pyridine-5,7(6H)-diones, 1H-pyrrolo-[3,4-c]pyridine-1,3(2H)-diones, and other related compounds. The publications for the last 10 years are considered, including the methods for de novo synthesis of the maleimide core and the ones which use N-substituted maleimide or halogen-substituted maleimide derivatives as the main precursor.
Keywords
About the authors
A. A. Panov
Gause Institute of New Antibiotics
Author for correspondence.
Email: 7745243@mail.ru
ORCID iD: 0000-0002-6654-4081
Russian Federation, Moscow
References
- Cappuccino C., Catalano L., Marin F., Dushaq G., Raj G., Rasras M., Rezgui R., Zambianchi M., Melucci M., Naumov P., Maini L. Cryst. Growth Des. 2020, 20, 884–891. doi: 10.1021/acs.cgd.9b01281
- Cappuccino C., Canola S., Montanari G., Lopez S. G., Toffanin S., Melucci M., Negri F., Maini L. Cryst. Growth Des. 2019, 19, 2594–2603. doi: 10.1021/acs.cgd.8b01712
- Chen K., Xie H., Jiang K., Mao J. Chem. Phys. Lett. 2016, 657, 135–141. doi: 10.1016/j.cplett.2016.05.069
- Benz S., Lopez-Andarias J., Mareda J., Sakai N., Matile S. Angew. Chem., Int. Ed. 2017, 56, 812–815. doi: 10.1002/anie.201611019
- Caruso M., Petroselli M., Cametti M. ChemistrySelect 2021, 6, 12975–12980. doi: 10.1002/slct.202103792
- Imoto H., Fujii R., Naka K. Eur. J. Org. Chem. 2018, 837–843. doi: 10.1002/ejoc.201701479
- Danilenko V.N., Simonov AY., Lakatosh S. A., Kubbutat M. H.G., Totzke F., Schachtele C., Elizarov S. M., Bekker O. B., Printsevskaya S. S., Luzikov Y. N., Reznikova M. I., Shtil A. A., Preobrazhenskaya M. N. J. Med. Chem. 2008, 51, 7731–7736. doi: 10.1021/jm800758s
- Vandyshev D.Y., Shikhaliev K. S. Molecules. 2022, 27, 5268. doi: 10.3390/molecules27165268
- Chung C.-Y., Tseng C.-C., Li S.-M., Tsai S.-E., Lin H.-Y., Wong F. F. Molecules 2021, 26, 2907. doi: 10.3390/molecules26102907
- Panov A.A., Simonov A. Y., Lavrenov S. N., Lakatosh S. A., Trenin A. S. Chem. Heterocycl. Compd. 2018, 54, 103–113. doi: 10.1007/s10593–018–2240-z
- Volvoikar P., Torney P., Tetrahedron 2021, 82, 131756. doi: 10.1016/j.tet.2020.131756
- Bansal M., Upadhyay C., Poonam; Rathi S. K.B. RSC Med. Chem. 2021, 12, 1854–1867. doi: 10.1039/D1MD00244A
- Das S. New J. Chem. 2021, 45, 20519–20536. doi: 10.1039/D1NJ03924E
- Ershov O.V., Ershova A. I. Chem. Heterocycl. Compd. 2020, 56, 518–520. doi: 10.1007/s10593–020–02693–6
- Kavitha K., Praveena K. S.S., Ramarao E. V.V.S., Murthy N. Y.S., Pal S. Curr. Org. Chem. 2016, 20, 1955–2001. doi: 10.2174/1385272820666160530145014
- Mikie T., Okamoto K., Iwasaki Y., Koganezawa T., Sumiya M., Okamoto T., Osaka I. Chem. Mater. 2022, 34, 2717–2729. doi: 10.1021/acs.chemmater.1c04196
- Kobayashi K., Kunimura R., Kogen H. Molecules 2019, 24, 4230. doi: 10.3390/molecules24234230
- Caruso M., Petroselli M., Cametti M. ChemistrySelect 2021, 6, 12975–12980. doi: 10.1002/slct.202103792
- Khitrov M.D., Platonov D. N., Belyy A. Yu., Trainov K. P., Velmiskina J. A., Medvedev M. G., Salikov R. F., Tomilov Y. V. Dyes Pigm. 2022, 203, 110344. doi: 10.1016/j.dyepig.2022.110344
- Kumar A., Banerjee S., Roy P., Sondhi S. M., Sharma A. Bioorg. Med. Chem. Lett. 2017, 27, 501–504. doi: 10.1016/j.bmcl.2016.12.031
- Yin Z., Shi W., Wu X.-F. J. Org. Chem 2023, 88, 4975–4994. doi: 10.1021/acs.joc.2c00655
- Kang C., Xu J., Li X., Wang S., Jiang G., Ji F. J. Org. Chem. 2022, 87, 10390–10397. doi: 10.1021/acs.joc.2c00673
- Ram S., Mehara P., Kumar A., Sharma A. K., Chauhan A. S., Kumar A., Das P. Mol. Catal. 2022, 530, 112606. doi: 10.1016/j.mcat.2022.112606
- Wang Y., Zhou Y., Lei M., Hou J., Jin Q., Guo D., Wu W. Tetrahedron 2019, 75, 1180–1185. doi: 10.1016/j.tet.2019.01.023
- Fu L.-Y., Ying J., Wu X.-F. J. Org. Chem. 2019, 84, 12648–12655. doi: 10.1021/acs.joc.9b01890
- Panda B., Albano G. Catalysts 2021, 11, 1531. doi: 10.3390/catal11121531
- Zeng L., Li H., Tang S., Gao X., Deng Y., Zhang G., Pao C.-W., Chen J.-L., Lee J.-F., Lei A. ACS Catal. 2018, 8, 5448–5453. doi: 10.1021/acscatal.8b00683
- Barsu N., Kalsia D., Sundararaju B. Catal. Sci. Technol. 2018, 8, 5963–5969. doi: 10.1039/C8CY02060D
- Chen L.-P., Chen J.-F., Zhang Y.-J., He X.-Y., Han Y.-F., Xiao Y.-T., Lv G.-F., Lu X., Teng F., Sun Q., Li J.-H. Org. Chem. Front. 2021, 8, 6067–6073. doi: 10.1039/D1QO01147B
- Takacs A., Varga G. M., Kardos J., Kollar L. Tetrahedron 2017, 73, 2131–2138. doi: 10.1016/j.tet.2017.02.062
- Favaretto L., Zambianchi M., Lopez S. G., Mazzanti A., Zanardi C., Seeber R., Gentili D., Valle F., Benvenuti E., Muccini M., Ruani G., Mercuri F., Milita S., Liscio F., Cavallini M., Toffanin S., Melucci M. J. Mater. Chem. C. 2017, 5, 10320–10331. doi: 10.1039/C7TC03930A
- Ikai T., Kudo T., Nagaki M., Yamamoto T., Maeda K., Kanoh S. Polymer. 2014, 55, 2139–2145. doi: 10.1016/j.polymer.2014.03.021
- Maini L., Gallino F., Zambianchi M., Durso M., Gazzano M., Rubini K., Gentili D., Manet I., Muccini M., Toffanin S., Cavallini M., Melucci M. Chem. Commun. 2015, 51, 2033–2035. doi: 10.1039/C4CC09177A
- Punzi A., Coppi D. I., Matera S., Capozzi M. A.M., Operamolla A., Ragni R., Babudri F., Farinola G. M. Org. Lett. 2017, 19, 4754–4757. https://doi.org/10.1021/acs.orglett.7b02114
- Warnan J., Labban A. E., Cabanetos C., Hoke E. T., Shukla P. K., Risko C., Bredas J.-L., McGehee M.D., Beaujuge P. M. Chem. Mater. 2014, 26, 2299–2306. doi: 10.1021/cm500172w
- Shi W., Sun S., Hu Y., Gao T., Peng Y., Wu M., Guo H., Wang J., Tetrahedron Lett. 2015, 56, 3861–3863. doi: 10.1016/j.tetlet.2015.04.097
- Dagoneau D., Kolleth A., Lumbroso A., Tanriver G., Catak S., Sulzer-Mosse S., De Mesmaeker A. Helv. Chim. Acta 2019, 102, e19000. doi: 10.1002/hlca.201900031
- Katritzky A.R., Fan W.-Q. J. Heterocycl. Chem. 1988, 25, 901–906. doi: 10.1002/jhet.5570250338
- Kharitonova O.V., Solomentseva T. A., Golubtsov I. S., Mironov A. F. Russ. J. Org. Chem. 2014, 50, 45–47. doi: 10.1134/S1070428014010084
- Huang H.-M., Li Y.-J., Ye Q., Yu W.-B., Han L., Jia J.-H., Gao J.-R. J. Org. Chem. 2014, 79, 1084–1092. doi: 10.1021/jo402540j
- Koohgard M., Hosseinpour Z., Hosseini-Sarvari M. Tetrahedron 2021, 89, 132166. doi: 10.1016/j.tet.2021.132166
- Wang L., Ma T., Qiao M., Wu Q., Shi D., Xiao W. Synthesis 2019, 51, 522–529. doi: 10.1055/s-0037–1610907
- Fujiya A., Tanaka M., Yamaguchi E., Tada N., Itoh A. J. Org. Chem. 2016, 81, 7262–7270. doi: 10.1021/acs.joc.6b00439
- Firoozi S., Hosseini-Sarvari M., Koohgard M. Green Chem. 2018, 20, 5540–5549. doi: 10.1039/C8GC03297A
- Xu Y.-W., Wang J., Wang G., Zhen L. J. Org. Chem. 2021, 86, 91–102. doi: 10.1021/acs.joc.0c01567
- Nekkanti S., Kumar N. P., Sharma P., Kamal A., Nachtigall F. M., Forero-Doria O., Santos L. S., Shankaraiah N. RSC Adv. 2016, 6, 2671–2677. doi: 10.1039/C5RA24629F
- Wang Q., Yuan T., Liu Q., Xu Y., Xie G., Lv X., Ding S., Wang X., Li C. Chem. Commun. 2019, 55, 8398–8401. doi: 10.1039/C9CC04336E
- Zhang Q., Wang B., Ma H., Ablajan K. New J. Chem. 2019, 43, 17000–17003. doi: 10.1039/C9NJ03076J
- Zhou K., Bao M., Huang J., Kang Z., Xu X., Hu W., Qian Y. Org. Biomol. Chem. 2020, 18, 409–414. doi: 10.1039/C9OB02571E
- Zhu J.-N., Wang W.-K., Jin Z.-H., Wang Q.-K., Zhao S.-Y. Org. Lett. 2019, 21, 5046–5050. doi: 10.1021/acs.orglett.9b01641
- Lv K.-H., Zhao Q.-S., Zhao K.-H., Yang J.-M., Yan S.-J. J. Org. Chem. 2022, 87, 15301–15311. doi: 10.1021/acs.joc.2c01879
- Chupakhin E., Bakulina O., Dar’in D., Krasavin M. Tetrahedron Lett. 2021, 85, 153467. doi: 10.1016/j.tetlet.2021.153467
- Zhu J.-N., Chen L.-L., Zhou R.-X., Li B., Shao Z.-Y., Zhao S.-Y. Org. Lett. 2017, 19, 6044–6047. doi: 10.1021/acs.orglett.7b02670
- Li H., Zhang S., Feng X., Yu X., Yamamoto Y., Bao M. Org. Lett. 2019, 21, 8563–8567. doi: 10.1021/acs.orglett.9b03107
- Botes D.S., Khorasani S., Duminy W., Levendis D. C., Fernandes M. A., Cryst. Growth Des. 2020, 20, 291–299. doi: 10.1021/acs.cgd.9b01167
- Yang Z.-H., Tan H.-R., An Y.-L., Zhao Y.-W., Lin H.-P., Zhao S.-Y. Adv. Synth. Catal. 2018, 360, 173–179. doi: 10.1002/adsc.201700955
- Li X., Zhang X., Zhang F., Luo X., Luo H. Adv. Synth. Catal. 2022, 364, 1683–1688. doi: 10.1002/adsc.202200251
- Zhang Y., Jiang W., Bao X., Qiu Y., Yuan Y., Yang C., Huo C. Chin. J. Chem. 2021, 39, 3238–3244. doi: 10.1002/cjoc.202100401
- Lossouarn A., Renault K., Bailly L., Frisby A., Le Nahenec-Martel P., Renard P.-Y., Sabot C., Org. Biomol. Chem. 2020, 18, 3874–3887. doi: 10.1039/D0OB00403K
- Klyuchko S.V., Chumachenko S. A., Shablykin O. V., Brovarets V. S. Russ. J. Gen. Chem. 2021, 91, 348–356. doi: 10.1134/S1070363221030026
- Zhang X., Dhawan G., Muthengi A., Liu S., Wang W., Legrisa M., Zhang W. Green Chem. 2017, 19, 3851–3855. doi: 10.1039/C7GC01380A
- Zhao H., Wang T., Qing Z., Zhai H. Chem. Commun. 2020, 56, 5524–5527. doi: 10.1039/D0CC01582B
- Pati B.V., Sagara P. S., Ghosh A., Mohanty S. R., Ravikumar P. C. J. Org. Chem. 2021, 86, 6551–6565. doi: 10.1021/acs.joc.1c00367
- Shinde V. N., Rangan K., Kumar D., Kumar A. J. Org. Chem. 2021, 86, 2328–2338. doi: 10.1021/acs.joc.0c02467
- Li B., Guo C., Shen N., Zhang X., Fan X. Org. Chem. Front. 2020, 7, 3698–3704. doi: 10.1039/D0QO01109F
- Lavrard H., Rodriguez F., Delfourne E., Bioorg. Med. Chem. 2014, 22, 4961–4967. doi: 10.1016/j.bmc.2014.06.028
- Lavrard H., Salvetti B., Mathieu V., Rodriguez F., Kiss R. Delfourne E. ChemMedChem 2015, 10, 607–609. doi: 10.1002/cmdc.201500025
- Salvetti B., Lavrard H., Delfourne E., Tetrahedron Lett. 2014, 55, 6463–6464. doi: 10.1016/j.tetlet.2014.10.002
- He J., Bai Z.-Q., Yuan P.-F., Wu L.-Z., Liu Q. ACS Catal. 2021, 11, 446–455. doi: 10.1021/acscatal.0c05005
- Aknin K., Bontemps A., Farce A., Merlet E., Belmont P., Helissey P., Chavatte P., Sari M.-A., Giorgi-Renault S., Desbene-Finck S. J. Enzyme Inhib. Med. Chem. 2022, 37, 252–268. doi: 10.1080/14756366.2021.2001806
- Jiang Y.-H., Xiao M., Yan C.-G. RSC Adv. 2016, 6, 35609–35616. doi: 10.1039/C6RA03165J
- Xiao M., Jiang Y.-H., Yan C.-G. ChemistrySelect 2017, 2, 2803–2806. doi: 10.1002/slct.201602042
- Xiao M., Sun Q., Sun J., Yan C.-G. Eur. J. Org. Chem. 2017, 46, 6861–6866. doi: 10.1002/ejoc.201701356
- Jiang Y., Yan C. Chin. J. Chem. 2016, 34, 1255–1262. doi: 10.1002/cjoc.201600504
- Du F., Li S.-J., Jiang K., Zeng R., Pan X.-C., Lan Y., Chen Y.-C., Wei Y., Angew. Chem., Int. Ed. 2020, 59, 23755–23762. doi: 10.1002/anie.202010752
- Zhao J., Chen M., Wu M., Shi L., Li H. Asian J. Org. Chem. 2022, 11, e202200042. doi: 10.1002/ajoc.202200042
- Singh B., Bhatia R., Pani B., Gupta D. J. Mol. Struct. 2020, 1200, 127084. doi: 10.1016/j.molstruc.2019.127084
- Zhang Z., Wang S., Hu C., Ma N., Zhang G., Liu Q. Tetrahedron 2018, 74, 7472–7479. doi: 10.1016/j.tet.2018.11.023
- Vepreva A., Kantin G., Krasavin M., Dar’in D. Synthesis 2022, 54, 5128–5138. doi: 10.1055/s-0037–1610790
- Inyutina A., Kantin G., Dar’in D., Krasavin M. J. Org. Chem. 2021, 86, 13673–13683. doi: 10.1021/acs.joc.1c01710
- Laha D., Meher K. B., Bankar O. S., Bhat R. G. Asian J. Org. Chem. 2022, 11, e202200062. doi: 10.1002/ajoc.202200062
- Inyutina A., Dar’in D., Kantina G., Krasavin M. Org. Biomol. Chem. 2021, 19, 5068–5071. doi: 10.1039/D1OB00773D
- Brenet S., Baptiste B., Philouze C., Berthiol F., Einhorn J. Eur. J. Org. Chem. 2013, 2013, 1041–1045. doi: 10.1002/ejoc.201201525
- Brenet S., Berthiol F., Einhorn J. Eur. J. Org. Chem. 2013, 2013, 8094–8096. doi: 10.1002/ejoc.201301329
Supplementary files
