Cp2TiCl2-Catalyzed Interaction of Methylenecycloalkane with BF3·THF

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The Cp2TiCl2-catalyzed interaction of methylenecycloalkanes with BF3·THF in tetrahydrofuran was carried out for the first time with the formation of target 1-fluoro-1-boraspirocarbocycles and also isomerization products of a starting monomer (1-methylcycloalk-1-enes). The structure of reaction products was elucidated using one- (1H, 13C Dept, 11B, 19F) and two-dimensional (COSY, HSQC, HMBC) NMR spectroscopy, mass spectrometry combined with quantum-chemical calculations of 13C NMR chemical shifts.

Full Text

Restricted Access

About the authors

L. I. Tulyabaeva

Institute of Petrochemistry and Catalysis, Ufa Federal Research Center, Russian Academy of Sciences

Author for correspondence.
Email: khusainova_ink@mail.ru
ORCID iD: 0000-0002-3159-2868
Russian Federation, Ufa

R. R. Salakhutdinov

Institute of Petrochemistry and Catalysis, Ufa Federal Research Center, Russian Academy of Sciences

Email: khusainova_ink@mail.ru
ORCID iD: 0000-0003-3631-0708
Russian Federation, Ufa

A. R. Tulyabaev

Institute of Petrochemistry and Catalysis, Ufa Federal Research Center, Russian Academy of Sciences

Email: khusainova_ink@mail.ru
ORCID iD: 0000-0002-6566-4794
Russian Federation, Ufa

T. V. Tyumkina

Institute of Petrochemistry and Catalysis, Ufa Federal Research Center, Russian Academy of Sciences

Email: khusainova_ink@mail.ru
ORCID iD: 0000-0001-8127-9135
Russian Federation, Ufa

M. F. Abdullin

Ufa Institute of Chemistry, Ufa Federal Research Center, Russian Academy of Sciences

Email: khusainova_ink@mail.ru
ORCID iD: 0000-0002-9894-213X
Russian Federation, Ufa

References

  1. Fortier S., Gomez-Torres A. Chem. Commun. 2021, 57, 10292–10316. doi: 10.1039/d1cc02772g
  2. Okamoto S. Chem. Rec. 2016, 16, 857–872. doi: 10.1002/tcr.201500277
  3. Sato F., Urabe H., Okamoto S. Chem.Rev. 2000, 100, 2835–2886. doi: 10.1021/cr990277l
  4. Davis-Gilbert Z.W., Tonks I.A. Dalton Trans. 2017, 46, 11522–11528. doi: 10.1039/c7dt02319g
  5. Beaumier E.P., Pearce A.J., See X.Y., Tonks I.A. Nat. Rev. Chem. 2018, 3, 16−34. doi: 10.1038/s41570-018-0059-x
  6. Zhang Y., Liao S., Xu Y., Chen S. J. Organomet. Chem. 1990, 382, 69–76. doi: 10.1016/0022-328x(90)85216-l
  7. Kulinkovich O.G., de Meijere A. Chem. Rev. 2000, 100, 2789–2834. doi: 10.1021/cr980046z
  8. Ozerov O.V., Patrick B.O., Ladipo F.T. J. Am. Chem. Soc. 2000, 122, 6423–6431. doi: 10.1021/ja994543o
  9. Blanco-Urgoiti J., Añorbe L., Pérez-Serrano L., Domínguez G., Pérez-Castells J. Chem. Soc. Rev. 2004, 33, 32–42. doi: 10.1039/b300976a
  10. Gansäuer A., Hildebrandt S., Michelmann A., Dahmen T., von Laufenberg D., Kube C., Fianu G.D., Flowers R.A. Angew. Chem. Int. Ed. 2015, 54, 7003–7006. doi: 10.1002/anie
  11. Pohlki F., Doye S. Angew. Chem. Int. Ed. 2001, 40, 2305–2308. doi: 10.1002/1521-3773(20010618)40:12<2305::aid-anie2305>3.0.co;2-7
  12. Yamamoto A. Organotransition Metal Chemistry. N.-Y. Wiley. 1986, 372−374
  13. Isagawa K., Tatsumi K., Kosugi H., Otsuji Yo. Chem. Lett. 1977, 1017−1120. doi: 10.1246/cl.1977.1017
  14. Manßen M., Schafer L. L. Chem. Soc. Rev. 2020, 49, 6947− 6994. doi: 10.1039/d0cs00229a
  15. Ji L., Griesbeck S., Marder T.B. Chem. Sci. 2017, 8, 846–863. doi: 10.1039/c6sc04245g
  16. Тевяшова А.Н., Чудинов М.В. Усп. химии. 2021, 90, 451−487. [Tevyashova A.N., Chudinov M.V. Russ. Chem. Rev. 2021, 90, 451−487.] doi: 10.1070/RCR4977
  17. Lesnikowski Z.J. Expert Opin. Drug Discov. 2016, 11, 569−578. doi: 10.1080/17460441.2016.1174687
  18. Silva M.P., Saraiva L., Pinto M., Sousa M.E. Molecules. 2020, 25, 4323. doi: 10.3390/molecules25184323
  19. He X., Hartwig J. F. J. Am. Chem. Soc. 1996, 118, 1696–1702. doi: 10.1021/ja9516773
  20. Lee H.S., Isagawa K., Toyoda H., Otsuji Y. Chem.Lett. 1984, 13, 673–676. doi: 10.1246/cl.1984.673
  21. Motry D.H., Smith M.R.J. J. Am. Chem. Soc. 1995, 117, 6615−6616. doi: 10.1021/ja00129a035
  22. Khusainova L.I., Khafizova L.O., Ryazanov K.S., Tyumkina T.V., Dzhemilev U.M. J. Organomet. Chem. 2019, 898, 120858. doi: 10.1016/j.jorganchem.2019.07.009
  23. Хусаинова Л.И., Хафизова Л.О., Тюмкина Т.В., Джемилев У.М. ЖОрХ. 2015, 51, 1551−1557. [Khusainova L.I., Khafizova L.O., Tyumkina T.V., Dzhemilev U.M. Russ. J. Org. Chem. 2015, 51, 1517‒1523.] doi: 10.1134/S1070428015110019
  24. Хусаинова Л.И., Хафизова Л.О., Тюмкина Т.В., Джемилев У.М. ЖОХ. 2016, 86, 1046−1049. [Khusainova L.I., Khafizova L.O., Tyumkina T.V., Dzhemilev U.M. Russ. J. Gen. Chem. 2016, 86, 1038‒1041.] doi: 10.1134/S1070363216060335
  25. Khusainova L.I., Khafizova L.O., Tyumkina T.V., Ryazanov K.S., Popodko N.R., Dzhemilev U.M. J. Organomet. Chem. 2018, 873, 73‒77. doi: 10.1016/j.jorganchem.2018.08.005
  26. Khusainova L.I., Khafizova L.O., Tyumkina T.V., Ryazanov K.S., Dzhemilev U.M. J. Organomet. Chem. 2017, 832, 12‒17. doi: 10.1016/j.jorganchem.2017.01.009
  27. Джемилев У.М., Хусаинова Л.И., Рязанов К.С., Хафизова Л.О. Изв. АН. Сер. хим. 2021, 70, 1851−1892. [Dzhemilev U.M., Khusainova L.I., Ryazanov K.S., Khafizova L.O., Russ. Chem. Bull. Int. Ed. 2021, 70, 1851‒1892.] doi: 10.1007/s11172-021-3292-2
  28. Khusainova L.I., Khafizova L.O., Tyumkina T.V., Salakhutdinov R.R., Dzhemilev U.M. J. Organomet. Chem. 2021, 950, 121981. doi: 10.1016/j.jorganchem.2021.121981
  29. Wehrmann R., Klusik H., Berndt A. Angew. Chem. Int. Ed. 1984, 23, 369−370. doi: 10.1002/anie.198403691
  30. Klusik H., Berndt A. Angew. Chem. Int. Ed. 1983, 22, 877−878. doi: 10.1002/anie.198308771
  31. Pues C., Baum G., Massa W., Berndt A., Z. Naturforsch. B. 1988, 43, 275−279. doi: 10.1515/znb-1988-0307
  32. Glaser B., Mayer E.P., Nöth H., Rattay W., Wietelmann U. Z. Naturforsch. B. 1988, 43, 449−456. doi: 10.1515/znb-1988-0411
  33. Falck J. R., Bondlela M., Venkataraman S. K., Srinivas D. J. Org.Chem. 2001, 66, 7148–7150. doi: 10.1021/jo015838z
  34. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Petersson G.A., Nakatsuji H., Li X., Caricato M., Marenich A., Bloino J., Janesko B.G., Gomperts R., Mennucci B., Hratchian H.P., Ortiz J.V., Izmaylov A.F., Sonnenberg J.L., Williams-Young D., Ding F., Lipparini F., Egidi F., Goings J., Peng B., Petrone A., Henderson T., Ranasinghe D., Zakrzewski V.G., Gao J., Rega N., Zheng G., Liang W., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Throssell K., Montgomery J.A., Jr., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Keith T., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Millam J.M., Klene M., Adamo C., Cammi R., Ochterski J.W., Martin R.L., Morokuma K., Farkas O., Foresman J.B., Fox D.J. Gaussian 09, Revision A.02. Gaussian, Inc., Wallingford CT, 2016.
  35. Adam W., Stegmann V.R. J. Am. Chem. Soc. 2002, 124, 3600–3607. doi: 10.1021/ja017017h
  36. Shea K.J., Kim J.S. J. Am. Chem. Soc. 1992, 114, 3044–3051. doi: 10.1021/ja00034a042
  37. Fitjer L., Quabeck U. Synth. Commun. 1985, 15, 855−864. doi: 10.1080/00397918508063883
  38. Wittig G., Schoellkopf U. Org. Synth., Coll. 1960, 40, 66. doi: 10.15227/orgsyn.040.0066
  39. Barluenga J., Fernandez-Simon J.L., Concellon J.M., Yus M. J. Chem. Soc. Perkin Trans. 1988, 1, 3339–3343. doi: 10.1039/p19880003339
  40. Lebel H., Davi M., Díez-González S., Nolan S.P. J. Org. Chem. 2007, 72, 144–149. doi: 10.1021/jo061781a
  41. Xin D., Sader C.A., Chaudhary O., Jones P.-J., Wagner K., Tautermann C.S., Yang Z., Busacca C.A., Saraceno R., Fandrick K.R., Gonnella N.C., Horspool K., Hansen G., Senanayake C.H. J. Org. Chem., 2017, 82, 5135–5145. doi: 10.1021/acs.joc.7b00321
  42. Wrackmeyer B. Annu. Rep. NMR Spectrosc. 1988, 20, 61–203. doi: 10.1016/s0066-4103(08)60170-2

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Scheme 1. Cp2TiCl2-catalyzed synthesis of 1,2-disubstituted boriranes 1,2.

Download (64KB)
3. Scheme 2. Interaction of α-olefins with BF3 THF under the action of Cp2TiCl2.

Download (43KB)
4. Scheme 3. α,ω-Dienes in Cp2TiCl2-catalyzed synthesis of boriranes.

Download (46KB)
5. Scheme 4. Proposed scheme for the formation of a titanium hydride complex.

Download (78KB)
6. Scheme 5. Proposed scheme for the formation of spiroborocarbocycles by the reaction of methylenecycloalkanes with BHal3 under the action of Cp2TiCl2.

Download (34KB)
7. Scheme 6. Oxidation of 1-fluoro-substituted boraspirane 7.

Download (40KB)
8. Scheme 7. Cp2TiCl2-catalyzed interaction of methylenecyclododecane with BF3·THF.

Download (54KB)
9. Scheme 8. Cp2TiCl2-catalyzed interaction of methylenecycloalkanes with BF3 THF

Download (79KB)
10. Fig. 1. NMR spectra 11B (a) and 19F (b) of the reaction mixture after the interaction of methylenecyclododecane with BF3 THF in the presence of Cp2TiCl2/Mg (CDCl3, 298 K)

Download (83KB)
11. Fig. 2. Mass spectrum of organoboron compound 8

Download (102KB)
12. Fig. 3. NMR spectra 1H (a) and 13C (b) (together with 13C DEPTQ) of the reaction mixture after the interaction of methylenecyclododecane with BF3 THF in the presence of Cp2TiCl2/Mg (CDCl3, 298 K)

Download (155KB)
13. Fig. 4. HSQC (a) and HMBC (fragment) (b) experiments of the reaction mixture after the interaction of methylenecyclododecane with BF3 THF in the presence of Cp2TiCl2/Mg

Download (217KB)
14. Fig. 5. Mass spectrum of 1-methylcyclododec-1-ene 9

Download (123KB)
15. Fig. 6. Structure of (Z/E)-isomers of 1-methylcyclododec-1-ene optimized by the B3LYP/cc-pVDZ method (13C NMR chemical shifts are given in ppm)

Download (98KB)

Copyright (c) 2024 Russian Academy of Sciences