Structure and Conformational Analysis of 5,5-Bis(bromomethyl)-2-methyl-2-(4-chlorophenyl)-1,3-dioxane

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The structure of 5,5-bis(bromomethyl)-2-methyl-2-(4-chlorophenyl)-1,3-dioxane was investigated using NMR 1Н, 13С and X-ray data. Molecules of this compound in crystalline phase and in solutions have a chair form with axial orientation of aromatic substituent. The rout of conformational transformations and the potential barriers of internal rotation of aromatic group for isolated molecule and solutions in chloroform and benzene (explicit model) were established by the computer simulation using DFT approach PBE (basis sets 3ζ and def2-SVP).

Full Text

Restricted Access

About the authors

Sh. Yu. Khazhiev

OAO ANK Bashneft

Author for correspondence.
Email: kuzmaggy@mail.ru
ORCID iD: 0000-0003-1040-8475
Russian Federation, Ufa

M. A. Khusainov

Ufa State Petroleum Technological University

Email: kuzmaggy@mail.ru
ORCID iD: 0000-0003-4498-2598
Russian Federation, Ufa

R. A. Khalikov

Bashkirian State Medical University

Email: kuzmaggy@mail.ru
ORCID iD: 0000-0003-2926-3309
Russian Federation, Ufa

V. A. Kataev

Bashkirian State Medical University

Email: kuzmaggy@mail.ru
ORCID iD: 0000-0001-8351-0601
Russian Federation, Ufa

T. V. Tyumkina

Institute of Petrochemistry and Catalysis of Russian academy of Science

Email: kuzmaggy@mail.ru
ORCID iD: 0000-0001-8127-9135
Russian Federation, Ufa

E. S. Mesheryakova

Institute of Petrochemistry and Catalysis of Russian academy of Science

Email: kuzmaggy@mail.ru
ORCID iD: 0000-0001-9401-8153
Russian Federation, Ufa

L. M. Khalilov

Institute of Petrochemistry and Catalysis of Russian academy of Science

Email: kuzmaggy@mail.ru
ORCID iD: 0000-0002-2095-9097
Russian Federation, Ufa

V. V. Kuznetsov

Ufa State Petroleum Technological University; Ufa University of Science and Technology

Email: kuzmaggy@mail.ru
Russian Federation, Ufa; Ufa

References

  1. Внутреннее вращение молекул. Ред. В.Дж. Орвилл-Томас. М.: Мир, 1977, 355.
  2. Eliel E. Pure Appl. Chem. 1971, 25, 509–525. doi: 10.1351/pac197125030509
  3. Кузнецов В.В. ЖОрХ. 2014, 50, 1247–1265. [Kuz-netsov V.V. Russ. J. Org. Chem. 2014, 50, 1227–1246.] doi: 10.1134/S1070428014090012
  4. K. Pihlaja K., Kivelä H., Vainiotalo P., Steele W.V. Molecules. 2020, 25, 2762. doi: 10.3390/molecules25122762
  5. Рахманкулов Д.Л., Караханов Р.А., Злотский С.С., Кантор Е.А., Имашев У.Б., Сыркин А.М. Итоги науки и техники. Технология органических веществ. М.: ВИНИТИ, 1979, 5, 6–248.
  6. Janssens J., Risseeuw M.D.P., Eycken J.V., Calenbergh S.V. Eur. J. Org. Chem. 2018, 2018, 6405–6431. doi: 10.1002/ejoc.201801245
  7. Cooksey J., Gunn A., Philip J. Kocienski P.J., Kuhl A., Uppal S., Christopher J.A., Bell R. Org. Biomol. Chem. 2004, 2, 1719–1731. doi: 10.1039/B400242C
  8. Sinz C.J., Rychnovsky S.D. Top. Curr. Chem. 2001, 216, 50–93. doi: 10.1007/3-540-44726-1_2
  9. Maebayashi H., Fuchigami T., Gotoh Y., Inoue M. Org. Process Res. Dev. 2019, 23, 477–483. doi: 10.1021/acs.oprd.8b00408
  10. Zeng L., Xu G., Gao P., Zhang M., Hong L., Zhang J. Tur. J. Med. Chem. 2015, 93, 109–120. doi: 10.1016/j.ejmech.2015.01.062
  11. Franchini S., Sorbi C., Linciano P., Camevale G., Tait A., Ronsisvalle S., Buccioni M., Del Bello F., Cilia A., Pironal L., Denora N., Iacobazzi R.M., Brasili L. Eur. J. Med. Chem. 2019, 176, 310–325. doi: 10.1016/j.ejmech.2019.05.024
  12. Тугарова А.В., Казакова А.Н., Камнев А.А., Злотс-кий С.С. ЖОХ. 2014, 84, 1652–1655. [Tugarova A.V., Kazakova A.N., Kamnev A.A., Zlotskij S.S. Russ. J. Gen. Chem. 2014, 84, 1930–1933.] doi: 10.1134/S1070363214100119
  13. Курмаева Е.С., Чалова О.Б., Чистоедова Г.И., Лапука Л.Ф., Киладзе Т.К., Кантор Е.А., Рахманкулов Д.Л. ЖОрХ. 1985, 21, 131–135.
  14. Бочкор С.А., Лапука Л.Ф., Курмаева Е.С., Чалова О.Б., Злотский С.С., Рахманкулов Д.Л. ХГС. 1987, 607–608. [Bochkor S.A., Lapuka L.F., Kurmaeva E.S., Chalova O.B., Zlotskii S.S., Rakhmankulov D.L. Chem. Heterocycl. Compd. 1987, 23, 500–502.] doi: 10.1007/BF00476374
  15. Хажиев Ш.Ю., Хусаинов М.А., Халиков Р.А., Тюмкина Т.В., Мещерякова Е.С., Халилов Л.М., Кузнецов В.В. ЖОХ. 2019, 89, 197–201. [Kha-zhiev Sh. Yu., Khusainov M.A., Khalikov R.A., Tyumkina T.V., Meshcheryakova E.S., Khalilov L.M., Kuznetsov V.V. Russ. J. Gen. Chem. 2019, 89, 199–203.] doi: 10.1134/S0044460X19020057
  16. Лайков Д.Н., Устынюк Ю.А. Изв. РАН. Сер. хим. 2005, 804–810. [Laikov D.N., Ustynyuk Yu.A. Russ. Chem. Bull. Int. Ed. 2005, 54, 820–826.] doi 10.1007/ s11172-005-0329-x https://www.ccdc.cam.ac.uk/structures
  17. Хажиев Ш.Ю., Хусаинов М.А., Халиков Р.А., Катаев В.А., Тюмкина Т.В., Мещерякова Е.С., Халилов Л.М., Кузнецов В.В. ЖОрХ. 2020, 56, 9–15. [Khazhiev Sh. Yu., Khusainov M.A., Khalikov R.A., Kataev V.A., Tyumkina T.V., Meshcheryakova E.S., Khalilov L.M., Kuznetsov V.V. Russ. J. Org. Chem. 2020, 56, 1–6.] doi: 10.1134/S1070428020010017
  18. Хажиев Ш.Ю., Хусаинов М.А., Халиков Р.А., Катаев В.А., Тюмкина Т.В., Мещерякова Е.С., Халилов Л.М., Кузнецов В.В. ЖОрХ. 2021, 57, 1146–1153. [Khazhiev Sh. Yu., Khusainov M. A., Khalikov R.A., Kataev V.A., Tyumkina T.V., Meshcheryakova E.S., Khalilov L.M., Kuznetsov V.V. Russ. J. Org. Chem. 2021, 57, 1268–1274.] doi: 10.1134/S1070428021080054
  19. CrysAlisPRO, Oxford Diffraction /Agilent Technologies UK Ltd, Yarnton, England
  20. Sheldrick G. M. Acta Crystallogr. 2008, A64, 112–122. doi: 10.1107/S0108767307043930.
  21. Spek A.L. Acta Crystallogr. 2009, D65 148–155. doi: 10.1107/S09074 4 490804362X
  22. HyperChem 8.0. http://www.hyper.com.
  23. Perdew J.P., Burke K., Ernzerhof M. Phys. Rev. Lett. 1996, 77, 3865–3868. doi: 10.1103/PhysRevLett.77
  24. Laikov D.N. Chem. Phys. Lett. 1997, 281, 151–156. doi: 10.1016/S0 0 09- 2614(97)01206-2
  25. Schäfer A., Horn H., Ahlrichs R. J. Chem. Phys. 1992, 97, 2571–2577. doi: 10.1063/1.463096
  26. Бочкор С.А., Кузнецов В.В. Тенденции развития науки и образования. 2020, 64 (1), 142–145. doi: 10.18411/lj-08-2020-29

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Molecule of compound 1 with atoms represented by thermal vibration ellipsoids (p = 50%)

Download (102KB)
3. Fig. 2. Interplanar angles in 1,3-dioxanes 1–3

Download (134KB)
4. Fig. 3. Cluster Ka@4 CHCl3 (PBE/def2-SVP approximation)

Download (111KB)
5. Fig. 4. Cluster Ka@4 C6H6 (PBE/3ζ approximation)

Download (151KB)
6. Scheme 1

Download (40KB)
7. Scheme 2

Download (36KB)
8. Scheme 3

Download (127KB)
9. Fig. Table 2

Download (42KB)

Copyright (c) 2024 Russian Academy of Sciences