Synthesis and Spectral Properties of Iodine-Substituted Dyes Based on Benzothiazolium Salts

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Two series of new thiacarbocyanines with iodine atoms in the donor and/or acceptor block have been synthesized. The absorption spectra of the iodinated dyes in the region of singlet-singlet S0-S1 and singlet-triplet S0-T1 transitions are investigated. The introduction of iodine atoms into the dye structures leads to a red shift of the absorption maximum, regardless of the position of iodine in the molecule. For dyes with two or more iodine atoms, a low-intensity long-wave absorption shoulder in the region from 650 to 1000 nm is detected, which corresponds to singlet-triplet absorption.

Full Text

Restricted Access

About the authors

I. A. Malakhov

N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk National Research State University

Author for correspondence.
Email: ona20083@mail.ru
Russian Federation, Novosibirsk; Novosibirsk

N. A. Orlova

N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry of the Siberian Branch of the Russian Academy of Sciences

Email: ona20083@mail.ru
Russian Federation, Novosibirsk

V. V. Shelkovnikov

N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry of the Siberian Branch of the Russian Academy of Sciences; Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences

Email: ona20083@mail.ru
Russian Federation, Novosibirsk; Novosibirsk

E. V. Vasilyev

N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry of the Siberian Branch of the Russian Academy of Sciences

Email: ona20083@mail.ru
Russian Federation, Novosibirsk

A. A. Chernonosov

Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences

Email: ona20083@mail.ru
Russian Federation, Novosibirsk

References

  1. Kabatc J., Jurek K. Colloid. Polym. Sci. 2014, 292, 3157–3168. doi: 10.1007/s00396-014-3343-4
  2. Choi J.K., D’Urso A., Trauernicht M., Shabbir-Hussain M., Holmes A.E., Balaz M. Int. J. Mol. Sci. 2011, 12, 8052–8062. doi: 10.3390/ijms12118052
  3. Кострюкова Л.В., Плютинская А.Д., Панкратов А.А., Короткевич Е.И., Прозоровский В.Н., Тихоно-ва Е.Г., Торховская Т.И., Терешкина Ю.А. Биомед. хим. 2019, 65, 507–512. [Kostryukova L.V., Plyutinskaya A.D., Pankratov A.A., Korotkevich E.I., Prozorovskiy, V.N., Tikhonova E.G., Torkhovskaya T.I., Teryoshkina Yu.A., Biochemistry (Moscow) Supplement. Ser. B: Biomed. Chem. 2020, 14, 174–179.] doi: 10.1134/S1990750820020080
  4. Ormond A.B., Freeman H.S. Materials. 2013, 6, 817–840. doi: 10.3390/ma6030817
  5. Ser J., Lee J.Y., Kim Y.H., Cho H. Int. J. Nanomed. 2020, 15, 5803–5811. doi: 10.2147/IJN.S254881
  6. Friães S., Lima E., Boto R.E., Ferreira D., Fernandes J.R., Ferreira L.F.V., Silva A.M., Reis L.V. Appl. Sci. 2019, 9, 5414–5433. doi: 10.3390/app9245414
  7. Martins T.D., Pacheco M.L., Boto R.E., Almeida P., Farinha J.P.S., Reis L.V. Dyes Pigments. 2017, 147, 120–129. doi: 10.1016/j.dyepig.2017.07.070
  8. Santos P.F., Reis L.V., Duarte I., Serrano J.P., Almeida P., Oliveira A.S., Ferreira L.F.V. Helv. Chim. Acta. 2005, 88, 1135–1143. doi: 10.1002/hlca.200590084
  9. Arunkumar E., Sudeep P.K., Kamat P.V., Nolla B.C., Smith B.D. New J. Chem. 2007, 31, 677–683. doi: 10.1039/B616224J
  10. Шелковников В.В., Пен Е.Ф., Ковалевский В.И., Васильев Е.В., Русских В.В., Герасимова Т.Н. Опт. и спектр. 2004, 97, 1034–1042. [Shelkovnikov V.V., Kovalevskii V.I., Vasil’ev E.V., Russkikh V.V., Gerasimova T.N., Pen E.F. Optics and Spectroscopy. 2004, 97, 970–977.] doi: 10.1134/1.1843960
  11. Salvador M.A., Reis L.V., Almeida P., Santos P.F. Tetrahedron. 2008, 64, 299–303. doi: 10.1016/j.tet.2007.11.004
  12. Racané L., Čičak H., Mihalić Z., Karminski-Zamola G., Tralić-Kulenović V. Tetrahedron. 2011, 67, 2760–2767. doi: 10.1016/j.tet.2011.02.037
  13. Nociarová J., Osuský P., Rakovský E., Georgiou D., Polyzos I., Fakis M., Hrobárik P. Org. Lett. 2021, 23, 3460–3465. doi: 10.1021/acs.orglett.1c00893
  14. Орлова Н.А., Колчина Е.Ф., Шакиров М.М., Герасимова Т.Н., Шелковников В.В. ЖОрХ. 2004, 74, 256–259. [Orlova N.A., Kolchina E.F., Shakirov M.M., Gerasimova T.N., Shelkovnikov V.V. Russ. J. Org. Chem. 2004, 40, 228–231.] doi: 10.1023/B:RUJO.0000034946.67023.70
  15. Khansole S.V., Mokle S.S., Sayyed M.A., Vibhute Y.B. J. Chin. Chem. Soc. 2008, 55, 871–874. doi: 10.1002/jccs.200800130

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Iodine-substituted dyes 17–21 with a 5-(methylthio)thienyl donor fragment

Download (101KB)
3. Fig. 2. EAS of dimethylaminobenzylidene-containing dyes 14–16 in chloroform (main transition)

Download (86KB)
4. Fig. 3. EAS of 5-(methylthio)thiophenylene-containing dyes 17–21 in chloroform (main transition)

Download (106KB)
5. Fig. 4. Spectral curves of molar extinction of 4-(dimethylamino)benzylidene-containing dyes 14–16 in acetonitrile, presented in a logarithmic ordinate scale

Download (216KB)
6. Fig. 5. Spectral molar extinction curves of 5-(methylthio)thiophenylene-containing dyes 17–21 in acetonitrile, presented in a logarithmic ordinate scale

Download (164KB)
7. Scheme 1

Download (35KB)
8. Scheme 2

Download (41KB)
9. Scheme 3

Download (85KB)
10. Scheme 4

Download (32KB)
11. Scheme 5

Download (58KB)

Copyright (c) 2024 Russian Academy of Sciences