Synthesis, photophysical and electrochemical properties of conjugated d-a-d systems based on 1,3,4-thiadiazoles and fused naphtho[2,1-b]thiophene derivatives
- Authors: Uliankin E.B.1,2, Kostyuchenko A.S.1,2, Fisyuk A.S.1,2
-
Affiliations:
- Dostoevsky Omsk State University
- Omsk State Technical University
- Issue: Vol 60, No 6 (2024)
- Pages: 78-87
- Section: Articles
- URL: https://aspvestnik.ru/0514-7492/article/view/676676
- DOI: https://doi.org/10.31857/S0514749224060075
- EDN: https://elibrary.ru/QZOKFX
- ID: 676676
Cite item
Abstract
A series of 2,5-diaryl substituted 1,3,4-thiadiazoles was obtained based on fused benzothiophene-2-carboxylates and alkyl substituted 2,2’-bithiophene-5-carboxylates. The photophysical and electrochemical properties of these compounds were studied and it was determined that an increase in the conjunction chain in the donor fragment of the substituted 1,3,4-thiadiazole leads to narrowing of the band gap mainly due to an increase in the HOMO level.
About the authors
Evgenii B. Uliankin
Dostoevsky Omsk State University; Omsk State Technical University
Email: fisyuk@chemomsu.ru
ORCID iD: 0000-0002-2898-5003
Russian Federation, prosp. Mira, 55a, Omsk, 644077; prosp. Mira, 11, Omsk, 644050
Anastasia S. Kostyuchenko
Dostoevsky Omsk State University; Omsk State Technical University
Email: fisyuk@chemomsu.ru
ORCID iD: 0000-0002-4331-2560
Russian Federation, prosp. Mira, 55a, Omsk, 644077; prosp. Mira, 11, Omsk, 644050
Alexander S. Fisyuk
Dostoevsky Omsk State University; Omsk State Technical University
Author for correspondence.
Email: fisyuk@chemomsu.ru
ORCID iD: 0000-0001-6191-9297
Russian Federation, prosp. Mira, 55a, Omsk, 644077; prosp. Mira, 11, Omsk, 644050
References
- Kostyuchenko A.S., Wiosna-Salyga G., Kurow-ska A., Zagorska M., Luszczynska B., Grykien R., Glowacki I., Fisyuk A.S., Domagala W., Pron A. J. Mater. Sci. 2016, 51 (5), 2274–2282. doi: 10.1007/s10853-015-9529-4
- Kotwica K., Bujak P., Data P., Krzywiec W., Wamil D., Gunka P.A., Skorka L., Jaroch T., Nowakowski R., Pron A., Monkman A. Chem. Eur. J. 2016, 22 (23), 7978–7986. doi: 10.1002/chem.201600513
- Fukuta S., Wang Z., Miyane S., Koganezawa T., Sano T., Kido J., Mori H., Ueda M., Higashihara T. Polym. J. 2015, 47 (7), 513–521. doi: 10.1038/pj.2015.19
- Chen H., Liu Z., Zhao Z., Zheng L., Tan S., Yin Z., Zhu C., Liu Y. ACS Appl. Mater. Interfaces 2016, 8 (48), 33051–33059. doi: 10.1021/acsami.6b12540
- Kang B., Lee Y.S., Hwa J., Dongbo Z., Cho K., Kim Y.-H. Polym. Chem. 2021, 12 (12), 1758–1767. doi: 10.1039/D0PY01710H
- Kostyuchenko A.S., Uliankin E.B., Stasyuk A.J., Samsonenko A.L., Zheleznova T.Yu., Shatsaus-kas A.L., Fisyuk A.S.J. Org. Chem. 2022, 87 (10), 6657–6667. doi: 10.1021/acs.joc.2c00310
- Kurowska A., Kostyuchenko A.S., Zassowski P., Skorka L., Yurpalov V.L., Fisyuk A.S., Pron A., Domagala W.J. Phys. Chem. C. 2014, 118 (43), 25176–25189. doi: 10.1021/jp507838c
- Kostyuchenko A.S., Zheleznova T.Yu., Stasyuk A.J., Kurowska A., Domagala W., Pron A., Fisyuk A.S. Beilstein J. Org. Chem. 2017, 13, 313–322. doi: 10.3762/bjoc.13.34
- Bujak P., Kulszewicz-Bajer I., Zagorska M., Maurel V., Wielgus I., Pron A. Chem. Soc. Rev. 2013, 42 (23), 8895. doi: 10.1039/c3cs60257e
- Zhao Y., Guo Y., Liu Y. Adv. Mater. 2013, 25 (38), 5372–5391. doi: 10.1002/adma.201302315
- Hacıefendioǧlu T., Yildirim E. ACS Omega. 2022, 7 (43), 38969–38978. doi: 10.1021/acsomega.2c04713
- Fukuta S., Seo J., Lee H., Kim H., Kim Y., Ree M., Higashihara T. Macromolecules. 2017, 50 (3), 891–899. doi: 10.1021/acs.macromol.6b02475
- Kleinhenz N., Yang L., Zhou H., Price S.C., You W. Macromolecules. 2011, 44 (4), 872–877. doi: 10.1021/ma1024126
- Löbert M., Mishra A., Uhrich C., Pfeiffer M., Bäuerle P.J. Mater. Chem. C. 2014, 2 (24), 4879–4892. doi: 10.1039/C4TC00335G
- Benatto L., Koehler M.J. Phys. Chem. C. 2019, 123 (11), 6395–6406. doi: 10.1021/acs.jpcc.8b12261
- Kim Y.J., Cheon Y.R., Jang J.-W., Kim Y.-H., Park C.E.J. Mater. Chem. C. 2015, 3 (9), 1904–1912. doi: 10.1039/C4TC02597K
- Marchanka A., Maier S.K., Höger S., van Gastel M.J. Phys. Chem. B. 2011, 115 (46), 13526–13533. doi: 10.1021/jp208334y
- Sen A., Groß A. ACS Appl. Energy Mater. 2019, 2 (9), 6341–6347. doi: 10.1021/acsaem.9b00973
- Wang X., Guo L., Xia P.F., Zheng F., Wong M.S., Zhu Z. J. Mater. Chem. A. 2013, 1 (42), 13328–13336. doi: 10.1039/C3TA12901B
- Anthony J.E. Chem. Rev. 2006, 106 (12), 5028–5048. doi: 10.1021/cr050966z
- Murphy A.R., Fréchet J.M. J. Chem. Rev. 2007, 107 (4), 1066–1096. doi: 10.1021/cr0501386
- Rademacher P., Heinemann C., Jänsch S., Kowski K., Weiß M.E. Spectrochim. Acta Part A: Mol. Biomol. Spectroscopy. 2000, 56 (6), 1179–1190. doi: 10.1016/S1386-1425(99)00220-6
- Seixas de Melo J., Pina J., Rodrigues L.M., Becker R.S.J. Photochem. Photobiol. A: Chem. 2008, 194 (1), 67–75. doi: 10.1016/j.jphotochem.2007.07.014
- Goon I.Y., Lai L.M.H., Lim M., Munroe P., Gooding J.J., Amal R. Chem. Mater. 2009, 21 (4), 673–681. doi: 10.1021/cm8025329
- Liu H.-H., Chang S.-L., Huang K.-H., Cao F.-Y., Cheng K.-Y., Sun H.-S., Lai Y.-Y., Cheng Y.-J. Macromolecules. 2020, 53 (18), 7740–7748. doi: 10.1021/acs.macromol.0c01297
- Kostyuchenko A.S., Yurpalov V.L., Kurowska A., Domagala W., Pron A., Fisyuk A.S. Beilstein J. Org. Chem. 2014, 10, 1596–1602. doi: 10.3762/bjoc.10.165
- Костюченко А.С., Ульянкин Е.Б., Железнова Т.Ю., Черненко С.А., Шацаускас А.Л., Абайдулина Д.Р., Быструшкин М.О., Самсоненко А.Л., Фисюк А.С. ХГС. 2019, 55, 1262-1268. [Kostyuchenko A.S., Ulyankin E.B., Zheleznova T.Yu., Chernenko S.A., Shatsauskas A.L., Abaidulina D.R., Bystrushkin M.O., Samsonenko A.L., Fisyuk A.S. Chem. Heterocycl. Compd. 2019, 55, 1262–1268.] doi: 10.1007/s10593-019-02610-6
- Fisyuk A.S., Demadrille R., Querner C., Zagorska M., Bleuse J., Pron A. New J. Chem. 2005, 29 (5), 707. doi: 10.1039/b415587d
- Kostyuchenko A.S., Kurowska A., Zassowski P., Zheleznova T.Yu., Ulyankin E.B., Domagala W., Pron A., Fisyuk A.S.J. Org. Chem. 2019, 84 (16), 10040–10049. doi: 10.1021/acs.joc.9b01216
- Zapala J., Knor M., Jaroch T., Maranda-Niedbala A., Kurach E., Kotwica K., Nowakowski R., Djurado D., Pecaut J., Zagorska M., Pron A. Langmuir 2013, 29 (47), 14503–14511. doi: 10.1021/la4034707
- Kotwica K., Kurach E., Louarn G., Kostyuchenko A.S., Fisyuk A.S., Zagorska M., Pron A. Electrochim. Acta. 2013, 111, 491–498. doi: 10.1016/j.electacta.2013.07.209
- Grykien R., Luszczynska B., Glowacki I., Kurach E., Rybakiewicz R., Kotwica K., Zagorska M., Pron A., Tassini P., Maglione M.G., Mauro A.D.G.D., Fasolino T., Rega R., Pandolfi G., Minarini C., Aprano S. Optical Mater. 2014, 37, 193–199. doi: 10.1016/j.optmat.2014.05.023
- Kotwica K., Kostyuchenko A.S., Data P., Marszalek T., Skorka L., Jaroch T., Kacka S., Zagorska M., Nowakowski R., Monkman A.P., Fisyuk A.S., Pisula W., Pron A. Chem. Eur. J. 2016, 22 (33), 11795–11806. doi: 10.1002/chem.201600984
- Ulyankin E.B., Kostyuchenko A.S., Chernenko S.A., Bystrushkin M.O., Samsonenko A.L., Shatsaus-kas A.L., Fisyuk A.S. Synthesis. 2021, 53 (14), 2422–2434. doi: 10.1055/a-1416-4924
- Kostyuchenko A.S., Averkov A.M., Fisyuk A.S. Org. Lett. 2014, 16 (7), 1833–1835. doi: 10.1021/ol500356w
- Trasatti S. Pure Appl. Chem. 1986, 58 (7), 955–966. doi: 10.1351/pac198658070955
- Williams A.T.R., Winfield S.A., Miller J.N. Analyst. 1983, 108 (1290), 1067. doi: 10.1039/an9830801067
- Brouwer A.M. Pure Appl. Chem. 2011, 83 (12), 2213–2228. doi: 10.1351/PAC-REP-10-09-31
- Allen M.W. Measurement of Fluorescence Quantum Yields, Thermo Fisher Scientific, technical note 52019, Madison, WI, USA, 2010.
Supplementary files
