Synthesis and influence of new indole-containing benzo[f]coumarin derivatives on proliferation and redox state of rat glioma cells line c6

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

For the first time, modification of 2-acetyl-3H-benzo[f]chromen-3-one and 2-[(2E)-3-phenylprop-2-enoyl]-3H-benzo[f]chromen-3-one was carried out due to interaction with indole. It has been established that the resulting benzo[f]coumarin derivatives exhibit antioxidant properties in model systems — they interact with hydrogen peroxide, sodium hypochlorite and regulate the redox state of rat glioma cells line C6, which is manifested by a decrease in the concentration of intracellular hydrogen peroxide and an increase in the level of reduced glutathione. In the presence of exogenous hydrogen peroxide, synthesized benzo[f]coumarin compounds have a protective effect on cells, acting as antioxidants and restoring redox balance. It was found that 2-[3-(1H-indol-3-yl)-3-phenylpropanoyl]-3H-benzo[f]chromen-3-one in micromolar concentrations inhibits the proliferative activity of C6 rat glioma cells by 25–35%.

About the authors

T. A. Kulahava

Institute for Nuclear Problems of BSU

Email: i.mineyeva@yandex.ru
ORCID iD: 0000-0002-1113-7323
Belarus, ul. Bobruiskaya, 11, Minsk, 220006

V. A. Shumski

Institute of Biophysics and cell engineering NAS of Belarus

Email: i.mineyeva@yandex.ru
Belarus, ul. Akademicheskaya, 27, Minsk, 220072

I. V. Mineyeva

Belarusian State University

Author for correspondence.
Email: i.mineyeva@yandex.ru
ORCID iD: 0000-0002-6422-1967
Belarus, prosp. Nezavisimosti, 4, Minsk, 220030

References

  1. Jimenez F.A., Lopez-Gonzalez J.S., Nieto-Rodriquez A., Velasco-Velazquez M.A., Molina-Guarneros J.A., Mendoza-Patino N., Garcia-Mondragon M.J., Elizalde-Galvan P., Leon- Cedeno F., Mandoki J. J. Lung Cancer. 2001, 34, 2, 185–194. doi: 10.1016/S0169-5002(01)00263-X
  2. Kontogiorgis C.A., Hadjipavlou-Litina D.J. J. Med. Chem. 2005, 48 (20), 6400–6408. doi: 10.1021/jm0580149
  3. Nawrot-Modranka J., Mawrot E., Graczyk J. Eur. J. Med. Chem. 2006, 41 (11), 1301–1309.
  4. Vijesh A.M., Arun M., Isloor A.M., Prabhu V., Ahmad S., Malladi S. Eur. J. Med. Chem. 2010, 45, 11, 5460–5464. doi: 10.1016/j.ejmech.2010.07.048
  5. Cai Z.Y., Yang Y., Liu X.H., Qi X.B. Lett. Drug Des. Discov. 2010, 7, 9, 640–643. doi: 10.2174/157018010792929540
  6. Dong Y., Nakagawa-Goto K., Lai C.Y., Morris-Natschke S.L., Bastow K.F., Lee K.H. Bioorg. Med. Chem. Lett. 2010, 20, 14, 4085–4087. doi: 10.1016/j.bmcl.2010.05.079
  7. Sandhu S., Bansal Y., Silakari O., Bansal G. Bioorg. Med. Chem. 2014, 22, 15, 3806–3814. doi: 10.1016/j.bmc.2014.05.032
  8. Khan K.M., Saify Z.S., Khan M.Z., Zia-Ullah M.I., Atta-Ur-Rahman C., Perveen S., Chohan Z.H., Supuran C.T. J. Enzyme Inhib. Med. Chem. 2004, 19, 4, 373–379. doi: 10.1080/14756360409162453
  9. Neyts J., Cleucq E., Singha R., Chang Y.H., Das A.R., Chakraborty S.K., Hong S.C., Tsay S.C., Hsu M.H., Hwu J.R.J. Med. Chem. 2009, 52, 5, 1486–1490. doi: 10.1021/jm801240d
  10. Keri R.S., Sasidhar B.S., Nagaraja B.M., Santos M.A. Eur. J. Med. Chem. 2015, 100, 257–269. doi: 10.1016/j.ejmech.2015.06.017
  11. Zhao Y., Zheng Q., Dakin K., Xu K., Martinez M.L., Li W.H.J. Am. Chem. Soc. 2004, 126, 14, 4653–4663. doi: 10.1021/ja036958m
  12. Lee K.S., Kim H.J., Kim G.H., Shin I., Hong J. Org. Lett. 2008, 10, 1, 49–51. doi: 10.1021/ol7025763
  13. Kim D., Sambasivan S., Nam H., Kim K.H., Kim J.Y., Joo T., Lee K.-H., Kim K.-T., Ahn K.H. Chem. Commun. 2012, 48, 54, 6833–6835. doi: 10.1039/C2CC32424E
  14. Yang Z., Cao J., He Y., Yang J.-H., Kim T., Peng X., Kim J.S. Chem. Soc. Rev. 2014, 43, 13, 4563–4601. doi: 10.1039/C4CS00051J
  15. Hibino S., Chozi T. Nat. Prod. Rep. 2001, 18, 66–87. doi: 10.1039/B004055J
  16. Somei M., Yamada F. Nat. Prod. Rep. 2004, 21, 278–311. doi: 10.1039/B212257J
  17. Humphrey G.R., Kuethe J.T. Chem. Rev. 2006, 106, 7, 2875–2911. doi: 10.1021/cr0505270
  18. Gribble G.W.J. Chem. Soc., Perkin Trans. 1. 2000, 10 doi: 10.1039/A909834H
  19. Lounasmaa M., Tolvanen A. Nat. Prod. Rep. 2000, 17, 175–191. doi: 10.1039/A809402K
  20. Cacchi S., Fabrizi G. Chem. Rev. 2005, 105, 7, 2873–2920. doi: 10.1021/cr040639b
  21. Bandini M., Eichholzer A. Angew. Chem. Int. Ed. 2009, 48, 51, 9608–9644. doi: 10.1002/anie.200901843
  22. Kochanowska-Karamyan A.J., Hamann M.T. Chem. Rev. 2010, 110, 8, 4489–4497. doi: 10.1021/cr900211p
  23. Shiri M. Chem. Rev. 2012, 112, 6, 3508–3549. doi: 10.1021/cr2003954
  24. Chadha N., Silakari O. Eur. J. Med. Chem. 2017, 134, 159–184. doi: 10.1016/j.ejmech.2017.04.003
  25. Leitch J.A., Bhonoah Y., Frost C.G. ACS Catal. 2017, 7, 9, 5618–5627. doi: 10.1021/acscatal.7b01785
  26. Shi L., Liu Y., Wang C., Yuan X., Liu X., Wu L., Pan Z., Yu Q., Xu C., Yang G. RSC Adv. 2020, 10, 24, 13929–13935. doi: 10.1039/d0ra01237h
  27. Yuan X., Wu L., Xu C., Pan Z., Shi L., Yang G., Wang C., Fan S. Tetrahedron Lett. 2019, 60, 52, 151329. doi: 10.1016/j.tetlet.2019.151329
  28. Wang W., Zhu Y., Guo S., Wang Q., Bu Z. Org. Biomol. Chem. 2016, 14, 19, 4420–4425. doi: 10.1039/C6OB00515B
  29. Feofanov M.N., Anokhin M.V., Averin A.D., Beletskaya I.P. Synthesis. 2017, 49, 22, 5045–5058. doi: 10.1055/s-0036-1589068
  30. Jennings J.J., Bhatt C.P., Franz A.K. J. Org. Chem. 2016, 81, 15, 6211–6222. doi: 10.1021/acs.joc.6b00541
  31. Desyatkin V.G., Beletskaya I.P. Synthesis. 2017, 49, 18, 4327–334. doi: 10.1055/s-0036-1589024
  32. Nickerson D.M., Mattson A.E. Chem. Eur. J. 2012, 18, 27, 8310–8314. doi: 10.1002/chem.201201206
  33. Xiao J., Shao Z., Xu L., Wang L., Wei H. Org. Biomol. Chem. 2014, 12, 14, 2185–2188. doi: 10.1039/C3OB42582G
  34. Gholap S.S., Deshmukh U.P., Tambe M.S. Iran. J. Catal. 2013, 3, 3, 171–176.
  35. Bogdal D. J. Chem. Res. 1998, 8, 468–469. doi: 10.1039/A801724G
  36. Dixit P., Tripathi A.C., Saraf S.K. J. Heterocycl. Chem. 2013, 50, 6, 1431–1436. doi: 10.1002/jhet.1772
  37. Dholariya H.R., Patel K.S., Patel J.C., Patel A.K., Patel K.D. Med. Chem. Res. 2013, 22, 5848–5860. doi: 10.1007/s00044-013-0576-6
  38. Singh N., Singh K.N. Synlett. 2012, 23, 14, 2116–2120. doi: 10.1055/s-0032-1316684
  39. Yadav R.N., Banik I., Banik B.K.J. Ind. Chem. Soc. 2018, 95, 11, 1397–1399.
  40. Bandgar B.P., Shaikh K.A. Tetrahedron Lett. 2003, 44, 9, 1959–1961. doi: 10.1016/S0040-4039(03)00032-7
  41. Zhou X.-Y., Chen X. Lett. Org. Chem. 2021, 18, 8, 604–610. doi: 10.2174/1570178617999201012181016
  42. Banik B.K., Fernandez M., Alvarez C. Tetrahedron Lett. 2005, 46, 14, 2479–2482. doi: 10.1016/j.tetlet.2005.02.044
  43. Reddy B.V.S., Rajeswari N., Sarangapani M., Reddy G.R., Madan Ch., Kumar K.P., Rao M.S. Bioorg. Med. Chem. Lett. 2011, 21, 21, 6510–6514. doi: 10.1016/j.bmcl.2011.08.075
  44. Von Der Heiden D., Bozkus S., Klussmann M., Breugst M.J. Org. Chem. 2017, 82, 8, 4037–4043. doi: 10.1021/acs.joc.7b00445
  45. Wang S.-Y., Ji S.-J., Loh T.-P. Synlett. 2003, 15, 2377–2379. doi: 10.1055/s-2003-42105
  46. Pal R., Gupta A.D., Mallik A.K. ISRN Org. Chem. 2012, 674629. doi: 10.5402/2012/674629
  47. Lomize A.L., Hage J.M., Schnitzer K., Golobokov K., LaFaive M.B., Forsyth A.C., Pogozheva I.D. J. Chem. Inf. Model. 2019, 59, 7, 3094–3099. doi: 10.1021/acs.jcim.9b00225.
  48. Makino N., Mochizuki Y., Bannai S., Sugita Y. J. Biol. Chem. 1994, 269, 2, 1020–1025. doi: 10.1016/S0021-9258(17)42214-9
  49. Крылова Н.Г., Кулагова Т.А., Корень С.В., Семенкова Г.Н. Цитология. 2017, 59, 2, 109–116 [Krylova N.G., Kulahova T.A., Koren S.V., Semenkova G.N. Cell Tiss. Biol. 2017, 11, 3, 220–226].
  50. Schafer F.Q., Buettner G.R. Free Rad. Biol. Med. 2001, 30, 11, 1191–1212. doi: 10.1016/S0891-5849(01)00480-4
  51. Gomes A., Fernandes E., Lima J.L. J. Biochem. Biophys. Methods. 2005, 65, 2–3, 45–80. doi: 10.1016/j.jbbm.2005.10.003
  52. Wrona M., Wardman P. Free Rad. Biol. Med. 2006, 41, 4, 657–667. doi 10.1016/j. freeradbiomed.2006.05.006
  53. Rice G.C., Bump E.A., Shrieve D.C., Lee W., Kovacs M. Cancer. Res. 1986, 46, 12, 6105–6110.
  54. Sies H. Redox Biol. 2017, 11, 613–619. doi: 10.1016/j.redox.2016.12.035.
  55. Lennicke C., Rahn J., Lichtenfels R. Cell Commun. Signal. 2015, 13, 2, 39. doi: 10.1186/s12964-015-0118-6
  56. Di Marzo N., Chisci E., Giovannoni R. Cells. 2018, 7, 10, 156. doi: 10.3390/cells7100156.
  57. Luo M., Zhou L., Huang Z., Li B., Nice E.C., Xu J., Huang C. Antioxidants. 2022, 11, 6, 1128. doi: 10.3390/antiox11061128
  58. George S., Abrahamse H. Antioxidants. 2020, 9, 11, 1156. doi: 10.3390/antiox9111156
  59. Armarego W.L.F., Chai C.L.L. Purification of laboratory chemicals. 6th ed. Butterworth-Heinemann. 2009. 608

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences