Synthesis and influence of new indole-containing benzo[f]coumarin derivatives on proliferation and redox state of rat glioma cells line c6
- Authors: Kulahava T.A.1, Shumski V.A.2, Mineyeva I.V.3
-
Affiliations:
- Institute for Nuclear Problems of BSU
- Institute of Biophysics and cell engineering NAS of Belarus
- Belarusian State University
- Issue: Vol 60, No 6 (2024)
- Pages: 88-100
- Section: Articles
- URL: https://aspvestnik.ru/0514-7492/article/view/676679
- DOI: https://doi.org/10.31857/S0514749224060081
- EDN: https://elibrary.ru/QZKOQC
- ID: 676679
Cite item
Abstract
For the first time, modification of 2-acetyl-3H-benzo[f]chromen-3-one and 2-[(2E)-3-phenylprop-2-enoyl]-3H-benzo[f]chromen-3-one was carried out due to interaction with indole. It has been established that the resulting benzo[f]coumarin derivatives exhibit antioxidant properties in model systems — they interact with hydrogen peroxide, sodium hypochlorite and regulate the redox state of rat glioma cells line C6, which is manifested by a decrease in the concentration of intracellular hydrogen peroxide and an increase in the level of reduced glutathione. In the presence of exogenous hydrogen peroxide, synthesized benzo[f]coumarin compounds have a protective effect on cells, acting as antioxidants and restoring redox balance. It was found that 2-[3-(1H-indol-3-yl)-3-phenylpropanoyl]-3H-benzo[f]chromen-3-one in micromolar concentrations inhibits the proliferative activity of C6 rat glioma cells by 25–35%.
About the authors
T. A. Kulahava
Institute for Nuclear Problems of BSU
Email: i.mineyeva@yandex.ru
ORCID iD: 0000-0002-1113-7323
Belarus, ul. Bobruiskaya, 11, Minsk, 220006
V. A. Shumski
Institute of Biophysics and cell engineering NAS of Belarus
Email: i.mineyeva@yandex.ru
Belarus, ul. Akademicheskaya, 27, Minsk, 220072
I. V. Mineyeva
Belarusian State University
Author for correspondence.
Email: i.mineyeva@yandex.ru
ORCID iD: 0000-0002-6422-1967
Belarus, prosp. Nezavisimosti, 4, Minsk, 220030
References
- Jimenez F.A., Lopez-Gonzalez J.S., Nieto-Rodriquez A., Velasco-Velazquez M.A., Molina-Guarneros J.A., Mendoza-Patino N., Garcia-Mondragon M.J., Elizalde-Galvan P., Leon- Cedeno F., Mandoki J. J. Lung Cancer. 2001, 34, 2, 185–194. doi: 10.1016/S0169-5002(01)00263-X
- Kontogiorgis C.A., Hadjipavlou-Litina D.J. J. Med. Chem. 2005, 48 (20), 6400–6408. doi: 10.1021/jm0580149
- Nawrot-Modranka J., Mawrot E., Graczyk J. Eur. J. Med. Chem. 2006, 41 (11), 1301–1309.
- Vijesh A.M., Arun M., Isloor A.M., Prabhu V., Ahmad S., Malladi S. Eur. J. Med. Chem. 2010, 45, 11, 5460–5464. doi: 10.1016/j.ejmech.2010.07.048
- Cai Z.Y., Yang Y., Liu X.H., Qi X.B. Lett. Drug Des. Discov. 2010, 7, 9, 640–643. doi: 10.2174/157018010792929540
- Dong Y., Nakagawa-Goto K., Lai C.Y., Morris-Natschke S.L., Bastow K.F., Lee K.H. Bioorg. Med. Chem. Lett. 2010, 20, 14, 4085–4087. doi: 10.1016/j.bmcl.2010.05.079
- Sandhu S., Bansal Y., Silakari O., Bansal G. Bioorg. Med. Chem. 2014, 22, 15, 3806–3814. doi: 10.1016/j.bmc.2014.05.032
- Khan K.M., Saify Z.S., Khan M.Z., Zia-Ullah M.I., Atta-Ur-Rahman C., Perveen S., Chohan Z.H., Supuran C.T. J. Enzyme Inhib. Med. Chem. 2004, 19, 4, 373–379. doi: 10.1080/14756360409162453
- Neyts J., Cleucq E., Singha R., Chang Y.H., Das A.R., Chakraborty S.K., Hong S.C., Tsay S.C., Hsu M.H., Hwu J.R.J. Med. Chem. 2009, 52, 5, 1486–1490. doi: 10.1021/jm801240d
- Keri R.S., Sasidhar B.S., Nagaraja B.M., Santos M.A. Eur. J. Med. Chem. 2015, 100, 257–269. doi: 10.1016/j.ejmech.2015.06.017
- Zhao Y., Zheng Q., Dakin K., Xu K., Martinez M.L., Li W.H.J. Am. Chem. Soc. 2004, 126, 14, 4653–4663. doi: 10.1021/ja036958m
- Lee K.S., Kim H.J., Kim G.H., Shin I., Hong J. Org. Lett. 2008, 10, 1, 49–51. doi: 10.1021/ol7025763
- Kim D., Sambasivan S., Nam H., Kim K.H., Kim J.Y., Joo T., Lee K.-H., Kim K.-T., Ahn K.H. Chem. Commun. 2012, 48, 54, 6833–6835. doi: 10.1039/C2CC32424E
- Yang Z., Cao J., He Y., Yang J.-H., Kim T., Peng X., Kim J.S. Chem. Soc. Rev. 2014, 43, 13, 4563–4601. doi: 10.1039/C4CS00051J
- Hibino S., Chozi T. Nat. Prod. Rep. 2001, 18, 66–87. doi: 10.1039/B004055J
- Somei M., Yamada F. Nat. Prod. Rep. 2004, 21, 278–311. doi: 10.1039/B212257J
- Humphrey G.R., Kuethe J.T. Chem. Rev. 2006, 106, 7, 2875–2911. doi: 10.1021/cr0505270
- Gribble G.W.J. Chem. Soc., Perkin Trans. 1. 2000, 10 doi: 10.1039/A909834H
- Lounasmaa M., Tolvanen A. Nat. Prod. Rep. 2000, 17, 175–191. doi: 10.1039/A809402K
- Cacchi S., Fabrizi G. Chem. Rev. 2005, 105, 7, 2873–2920. doi: 10.1021/cr040639b
- Bandini M., Eichholzer A. Angew. Chem. Int. Ed. 2009, 48, 51, 9608–9644. doi: 10.1002/anie.200901843
- Kochanowska-Karamyan A.J., Hamann M.T. Chem. Rev. 2010, 110, 8, 4489–4497. doi: 10.1021/cr900211p
- Shiri M. Chem. Rev. 2012, 112, 6, 3508–3549. doi: 10.1021/cr2003954
- Chadha N., Silakari O. Eur. J. Med. Chem. 2017, 134, 159–184. doi: 10.1016/j.ejmech.2017.04.003
- Leitch J.A., Bhonoah Y., Frost C.G. ACS Catal. 2017, 7, 9, 5618–5627. doi: 10.1021/acscatal.7b01785
- Shi L., Liu Y., Wang C., Yuan X., Liu X., Wu L., Pan Z., Yu Q., Xu C., Yang G. RSC Adv. 2020, 10, 24, 13929–13935. doi: 10.1039/d0ra01237h
- Yuan X., Wu L., Xu C., Pan Z., Shi L., Yang G., Wang C., Fan S. Tetrahedron Lett. 2019, 60, 52, 151329. doi: 10.1016/j.tetlet.2019.151329
- Wang W., Zhu Y., Guo S., Wang Q., Bu Z. Org. Biomol. Chem. 2016, 14, 19, 4420–4425. doi: 10.1039/C6OB00515B
- Feofanov M.N., Anokhin M.V., Averin A.D., Beletskaya I.P. Synthesis. 2017, 49, 22, 5045–5058. doi: 10.1055/s-0036-1589068
- Jennings J.J., Bhatt C.P., Franz A.K. J. Org. Chem. 2016, 81, 15, 6211–6222. doi: 10.1021/acs.joc.6b00541
- Desyatkin V.G., Beletskaya I.P. Synthesis. 2017, 49, 18, 4327–334. doi: 10.1055/s-0036-1589024
- Nickerson D.M., Mattson A.E. Chem. Eur. J. 2012, 18, 27, 8310–8314. doi: 10.1002/chem.201201206
- Xiao J., Shao Z., Xu L., Wang L., Wei H. Org. Biomol. Chem. 2014, 12, 14, 2185–2188. doi: 10.1039/C3OB42582G
- Gholap S.S., Deshmukh U.P., Tambe M.S. Iran. J. Catal. 2013, 3, 3, 171–176.
- Bogdal D. J. Chem. Res. 1998, 8, 468–469. doi: 10.1039/A801724G
- Dixit P., Tripathi A.C., Saraf S.K. J. Heterocycl. Chem. 2013, 50, 6, 1431–1436. doi: 10.1002/jhet.1772
- Dholariya H.R., Patel K.S., Patel J.C., Patel A.K., Patel K.D. Med. Chem. Res. 2013, 22, 5848–5860. doi: 10.1007/s00044-013-0576-6
- Singh N., Singh K.N. Synlett. 2012, 23, 14, 2116–2120. doi: 10.1055/s-0032-1316684
- Yadav R.N., Banik I., Banik B.K.J. Ind. Chem. Soc. 2018, 95, 11, 1397–1399.
- Bandgar B.P., Shaikh K.A. Tetrahedron Lett. 2003, 44, 9, 1959–1961. doi: 10.1016/S0040-4039(03)00032-7
- Zhou X.-Y., Chen X. Lett. Org. Chem. 2021, 18, 8, 604–610. doi: 10.2174/1570178617999201012181016
- Banik B.K., Fernandez M., Alvarez C. Tetrahedron Lett. 2005, 46, 14, 2479–2482. doi: 10.1016/j.tetlet.2005.02.044
- Reddy B.V.S., Rajeswari N., Sarangapani M., Reddy G.R., Madan Ch., Kumar K.P., Rao M.S. Bioorg. Med. Chem. Lett. 2011, 21, 21, 6510–6514. doi: 10.1016/j.bmcl.2011.08.075
- Von Der Heiden D., Bozkus S., Klussmann M., Breugst M.J. Org. Chem. 2017, 82, 8, 4037–4043. doi: 10.1021/acs.joc.7b00445
- Wang S.-Y., Ji S.-J., Loh T.-P. Synlett. 2003, 15, 2377–2379. doi: 10.1055/s-2003-42105
- Pal R., Gupta A.D., Mallik A.K. ISRN Org. Chem. 2012, 674629. doi: 10.5402/2012/674629
- Lomize A.L., Hage J.M., Schnitzer K., Golobokov K., LaFaive M.B., Forsyth A.C., Pogozheva I.D. J. Chem. Inf. Model. 2019, 59, 7, 3094–3099. doi: 10.1021/acs.jcim.9b00225.
- Makino N., Mochizuki Y., Bannai S., Sugita Y. J. Biol. Chem. 1994, 269, 2, 1020–1025. doi: 10.1016/S0021-9258(17)42214-9
- Крылова Н.Г., Кулагова Т.А., Корень С.В., Семенкова Г.Н. Цитология. 2017, 59, 2, 109–116 [Krylova N.G., Kulahova T.A., Koren S.V., Semenkova G.N. Cell Tiss. Biol. 2017, 11, 3, 220–226].
- Schafer F.Q., Buettner G.R. Free Rad. Biol. Med. 2001, 30, 11, 1191–1212. doi: 10.1016/S0891-5849(01)00480-4
- Gomes A., Fernandes E., Lima J.L. J. Biochem. Biophys. Methods. 2005, 65, 2–3, 45–80. doi: 10.1016/j.jbbm.2005.10.003
- Wrona M., Wardman P. Free Rad. Biol. Med. 2006, 41, 4, 657–667. doi 10.1016/j. freeradbiomed.2006.05.006
- Rice G.C., Bump E.A., Shrieve D.C., Lee W., Kovacs M. Cancer. Res. 1986, 46, 12, 6105–6110.
- Sies H. Redox Biol. 2017, 11, 613–619. doi: 10.1016/j.redox.2016.12.035.
- Lennicke C., Rahn J., Lichtenfels R. Cell Commun. Signal. 2015, 13, 2, 39. doi: 10.1186/s12964-015-0118-6
- Di Marzo N., Chisci E., Giovannoni R. Cells. 2018, 7, 10, 156. doi: 10.3390/cells7100156.
- Luo M., Zhou L., Huang Z., Li B., Nice E.C., Xu J., Huang C. Antioxidants. 2022, 11, 6, 1128. doi: 10.3390/antiox11061128
- George S., Abrahamse H. Antioxidants. 2020, 9, 11, 1156. doi: 10.3390/antiox9111156
- Armarego W.L.F., Chai C.L.L. Purification of laboratory chemicals. 6th ed. Butterworth-Heinemann. 2009. 608
Supplementary files
