Possible skeletal transformations of pyridine and phosphinine during their thermal isomerization
- Authors: Tomilin O.B.1, Fomina L.V.1, Rodionova E.V.1
-
Affiliations:
- National Research Mordovia State University
- Issue: Vol 60, No 7 (2024)
- Pages: 848-857
- Section: Articles
- URL: https://aspvestnik.ru/0514-7492/article/view/676681
- DOI: https://doi.org/10.31857/S0514749224070044
- EDN: https://elibrary.ru/RBUIHP
- ID: 676681
Cite item
Abstract
Based on the properties of the of p-electron conjugated system in cyclic polyenes, possible spatial structures of the transition states of the thermal isomerization reactions of pyridine and phosphinine in an oxygen-free atmosphere were found. The existence of transition states is determined by different levels of the stabilization effect of the p-electron conjugation. The determination of the spatial and electronic characteristics of the transition states of pyridine and phosphinine was carried out by the DFT/B3LYP/6-31G* method. Schemes were constructed and potential barriers of the thermal isomerization reactions of pyridine and phosphinine were calculated. A study of the reactivity of the pyridine and the phosphinine in thermal isomerization processes showed a decrease in the degree of aromaticity of phosphinine compared to pyridine.
Full Text

About the authors
O. B. Tomilin
National Research Mordovia State University
Email: rodionova_j87@mail.ru
ORCID iD: 0000-0002-1570-230X
Russian Federation, ul. Bolshevistskaya, 68B, Saransk, 430005
L. V. Fomina
National Research Mordovia State University
Email: rodionova_j87@mail.ru
ORCID iD: 0000-0002-3971-6714
Russian Federation, ul. Bolshevistskaya, 68B, Saransk, 430005
E. V. Rodionova
National Research Mordovia State University
Author for correspondence.
Email: rodionova_j87@mail.ru
ORCID iD: 0000-0001-7921-2732
Russian Federation, ul. Bolshevistskaya, 68B, Saransk, 430005
References
- Родионова Е.В., Томилин О.Б., Фомина Л.В. ЖОрХ. 2021, 57, 135–142. [Rodionova E.V., Tomilin O.B., Fomina L.V., Russ. J. Org. Chem. 2021, 57, 135–142.] doi: 10.1134/S1070428021020019
- Томилин О.Б., Фомина Л.В., Родионова Е.В. ЖОрХ. 2022, 58, 392–405. [Tomilin O.B., Fomina L.V., Rodionova E.V., Russ. J. Org. Chem. 2022, 58, 392–405.] doi: 10.31857/S0514749222040048
- Bird C.W. Тetrahedron. 1990, 46 (16), 5697–5702. doi: 10.1016/s0040-4020(01)87768-1
- Bird C.W. Тetrahedron. 1986, 42 (1), 89–92. doi: 10.1016/S0040-4020(01)87405-6
- Bachrach S. M. J. Organometal. Chem. 2002, 643, 39–46. doi: 10.1016/S0022-328X(01)01144-5
- Dewar M. J. S., Holder A. J. Heterocycles. 1986, 28, 1135–1156.
- Granovsky A.A., Firefly Version 8; http://classic.chem.msu.su/gran/firefly/index.html.
- Tokoyama H., Yamakado H., Maeda S., Ohno K. Bull. Chem. Soc. Jpn. 2015, 88, 1284–1290. doi: 10.1246/bcsj.20150088
- Wu B., Wang J., Liu X., Zhu R. Nat. Commun. 2021, 12, 1–8. doi: 10.1038/s41467-021-24054-3
- Katz T.J., Roth R.J., Acton N., Carnahan E.J. Org. Chem. 1999, 64 (20), 7663–7664. doi: 10.1021/jo990883g
- Katz T.J., Acton N. J. Am. Chem. Soc. 1973, 95, 2738–2739. doi: 10.1021/ja00789a084
- Billups W., Haley M., Boese R., Bläser D. Tetrahedron. 1994, 50, 10693–10700. doi: 10.1016/S0040-4020(01)89261-9
- Ota K., Kinjo R. Chem. Asian J. 2020, 15, 2558–2574. doi: 10.1002/asia.202000535
- Yavari I., Dehghan S., Nikpoor-Nezhati M. Phosphorus, Sulfur Silicon 2003, 178 (4), 869–880. doi: 10.1080/10426500307798
- Nakamura T., Mesuda A., Kudo T. Organometal. 2020, 39, 3041–3049. doi: 10.1021/acs.organomet.0c00440
- Priyakumar U.D., Dinadayalane T.C., Sastry G.N. Chem. Phys. Lett. 2001, 336, 343–348. doi: 10.1016/S0009-2614(01)00148-8
- Kudoh S., Takayanagi M., Nakata M. J. Photochem. Photobiol. A. 1999, 123 (1-3), 25–30. doi: 10.1016/s1010-6030(99)00035
- Hees, U., Vogelbacher U.-J., Michels G., Regitz M. Tetrahedron. 1989, 45 (10), 3115–3130. doi: 10.1016/s0040-4020(01)80138
- Johnstone E., Sodeau J.R. J. Phys. Chem. 1991, 95 (1), 165–169. doi: 10.1021/j100154a033
- Pavlik J.W., Kebedeb N. ARKIVOC. 2018, VI, 254–271. doi: 10.24820/ark.5550190.p010.748
- Maurizio A. Curr. Org. Chem. 2021, 25, 1659–1685. doi 0.2174/1385272825666210706124855
- Nistanaki S.K., Nelson H.M. ACS Macro Lett. 2020, 9, 731−735. doi: 10.1021/acsmacrolett.0c00227
- Blatter K., Rösch W., Vogelbacher U.-J., Fink J., Regitz M. Angew. Chem., Int. Ed. Engl. 1987, 26, 85–86. doi: 10.1002/Anie.198700851
- Mathey F. Modern Heterocycl. Chem. 2011, 2071–2116. doi: 10.1002/9783527637737.ch23
- Fink J., Rösch W., Vogelbacher U.-J., Regitz M. Angew. Chem., Int. Ed. Engl. 1986, 25, 280–282. doi: 10.1002/anie.198602801
Supplementary files
