Synthesis of bi- and polycyclic pyrimidine derivatives

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Based on the modification of the Biginelli reaction, various bi- and polycyclic pyrimidine derivatives (including the condensed series) were synthesized and identified, in the structure of which there are aza- and carbocyclic fragments of various nature.

About the authors

T. V. Sokolnikova

Irkutsk State University

Author for correspondence.
Email: t.golobokova@rambler.ru
ORCID iD: 0000-0003-1845-4695

Faculty of Chemistry

Russian Federation, ul. K. Marksa, 1, Irkutsk, 664003

A. G. Proidakov

Irkutsk State University

Email: t.golobokova@rambler.ru

Faculty of Chemistry

Russian Federation, ul. K. Marksa, 1, Irkutsk, 664003

M. V. Penzik

Irkutsk State University

Email: t.golobokova@rambler.ru
ORCID iD: 0000-0002-3544-9866

Faculty of Chemistry

Russian Federation, ul. K. Marksa, 1, Irkutsk, 664003

V. N. Kizhnyaev

Irkutsk State University

Email: t.golobokova@rambler.ru
ORCID iD: 0000-0003-0617-9972

Faculty of Chemistry

Russian Federation, ul. K. Marksa, 1, Irkutsk, 664003

References

  1. Taylor R.D., MacCross M., Lawson A.D.G. J. Med. Chem. 2014, 57, 1–47. doi: 10.1021/jm4017625
  2. Finger V., Kufa M., Soukup O., Castagnolo D., Roh J., Korabecny J. Eur. J. Med. Chem. 2023, 246, 114946. doi: 10.1016/j.ejmech.2022.114946
  3. Prachayasittikul S., Pingaew R., Worachartchee-wan A., Sinthupoom N., Prachayasittikul V., Ruchirawat S., Prachayasittikul V. Mini-Reviews Med. Chem. 2017, 17, 869–901. doi: 10.2174/1389557516666160923125801.
  4. Zhuang J.X., Ma S.T. Chem. Med. Chem. 2020, 15, 1875–1886. doi: 10.1002/cmdc.202000378
  5. Шкурко О.П., Толстикова Т.Г., Седова В.Ф. Успехи хим. 2016, 85, 1056–1096. doi: 10.1070/RCR4586.
  6. Farghaly T.A., Harras M.F., Alsaedi A.M.R., Thakir H.A., Mahmoud H.K., Katowah D.F. Mini-Reviews Med. Chem. 2023, 23, 821–851. doi: 10.2174/1389557523666221220142911
  7. Buron F., Merour J.Y., Akssira M., Guillaumet G., Routie, S. Eur. J. Med. Chem., 2015, 95, 76–95. doi: 10.1016/j.ejmech.2015.03.029
  8. Eze C.C., Ezeokonkwo A.M., Ugwu I.D., Eze U.F., Onyeyilim E.L., Attah I.S., Okonkwo I.V. Anti-Cancer Agents Med. Chem. 2022, 22, 2822–2851. doi: 10.2174/1871520622666220318090147.
  9. Kuppast B., Fahmy H. Eur. J. Med. Chem., 2016, 113, 198–213. doi: 10.1016/j.ejmech.2016.02.031
  10. Dai X.J., Xue L.P., Ji S.K., Zhou Y., Gao Y., Zheng Y.C., Liu H.M., Liu H.M. Eur. J. Med. Chem., 2023, 249, 115101. doi: 10.1016/j.ejmech.2023.115101.
  11. Mohamed S.F., Abbas E.M.H., Khalaf H.S., Farghaly T.A., Abd El-Shafy D.N. Mini-Reviews Med. Chem. 2018, 18, 794–802. doi: 10.2174/1389557518666171207161542.
  12. Oukoloff K., Lucero B., Francisco K.R., Brunden K.R., Ballatore C. Eur. J. Med. Chem., 2019, 165, 332–346. doi: 10.1016/j.ejmech.2019.01.027.
  13. Scapin E., Frizzo C.P., Rodrigues L.V., Zimmer G.C., Vaucher R.A., Sagrillo M.R., Giongo J.L., Afonso C.A.M., Rijo P., Zanatta N.B. Med. Chem.Res. 2017, 26, 640–649. doi: 10.1007/s00044-017-1783-3
  14. Gein V.L., Prudnikova A.N., Kurbatova A.A., Dmitriev M.V. Russ. J. of General Chem. 2021, 91, 621-625. doi: 10.31857/S0044460X21040077.
  15. Rodante F., Catalani G., Guidotti M.J. Thermal Anal. Calorimetry. 1998, 53, 937–956. doi: 10.1023/A:1010198621609
  16. López-González D., Avalos-Ramirez A., Giroir-Fendler A., Godbout S., Fernandez-Lopez M., Sanchez-Silva L., Valverde J.L. Energy. 2015, 90. 1626–1635. doi: 10.1016/j.energy.2015.06.134.
  17. Jakab E., Till F., Várhegyi G. Fuel Process. Technol. 1991, 28, 221–238. doi: 10.1016/0378-3820(91)90076-O.
  18. Penzik M.V., Kozlov A.N., Zhang S., Badenko V.V., Sosnovsky I.K., Shamansky V.A. Thermochim. Acta. 2022, 711, 179209.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences