Regioselective C(7)–H arylation of 2-(het)aryl [1,2,4]triazolo[1,5-a]pyrimidines by aryl halides under ruthenium catalysis

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

An unusual selectiviry of C-H arylation reactions of 2-(hetero)aryl[1,2,4]triazolo[1,5-a]pyrimidines with (hetero)aryl halides catalyzed by Ru(II) complexes was revealed. The reaction proceeds with activation of the C(7)-H bond rather than the α-C-H bond of the (hetero)aryl substituent at position 2 of the triazolopyrimidine. Arylation of 2-substituted [1,2,4]triazolo[1,5-a]pyrimidines with (hetero)aryl bromides afforded a series of 7-(hetero)arylated products in good yields.

Full Text

Restricted Access

About the authors

K. E. Shepelenko

Platov South-Russian State Polytechnic University (NPI)

Author for correspondence.
Email: kon1990@bk.ru
ORCID iD: 0000-0002-7281-5095
Russian Federation, Prosveschenya 132, 346428 Novocherkassk

I. G. Gnatiuk

Platov South-Russian State Polytechnic University (NPI)

Email: kon1990@bk.ru
ORCID iD: 0009-0003-8772-6372
Russian Federation, Prosveschenya 132, 346428 Novocherkassk

V. M. Chernyshev

Platov South-Russian State Polytechnic University (NPI)

Email: chern13@yandex.ru
ORCID iD: 0000-0001-9182-8564
Russian Federation, Prosveschenya 132, 346428 Novocherkassk

References

  1. Oukoloff K., Lucero B., Francisco K.R., Brunden K.R., Ballatore C. Eur. J. Med. Chem. 2019, 165, 332–346. doi: 10.1016/j.ejmech.2019.01.027
  2. Merugu S.R., Cherukupalli S., Karpoormath R., Chem. Biodivers. 2022, 19, e202200291. doi: 10.1002/cbdv.202200291
  3. Huo J.-L., Wang S., Yuan X.-H., Yu B., Zhao W., Liu H.-M., Eur. J. Med. Chem. 2021, 211, 113108. doi: 10.1016/j.ejmech.2020.113108
  4. Wang H., Lee M., Peng Z., Blázquez B., Lastochkin E., Kumarasiri M., Bouley R., Chang M., Mobashery S., J. Med. Chem. 2015, 58, 4194–4203. doi: 10.1021/jm501831g
  5. Yang F., Yu L.-Z., Diao P.-C., Jian X.-E., Zhou M.-F., Jiang C.-S., You W.-W., Ma W.-F., Zhao P.-L., Bioorg. Chem. 2019, 92, 103260. doi: 10.1016/j.bioorg.2019.103260
  6. El-Gendy M.M.A., Shaaban M., Shaaban K.A., El-Bondkly A.M., Laatsch H., J. Antibiot. 2008, 61, 149–157. 10. doi: 10.1038/ja.2008.124
  7. Pismataro M.C., Felicetti T., Bertagnin C., Nizi M.G., Bonomini A., Barreca M.L., Cecchetti V., Jochmans D., De Jonghe S., Neyts J., Loregian A., Tabarrini O., Massari S., Eur. J. Med. Chem. 2021, 221, 113494. 12. doi: 10.1016/j.ejmech.2021.113494
  8. Desantis J., Massari S., Corona A., Astolfi A., Sabatini S., Manfroni G., Palazzotti D., Cecchetti V., Pannecouque C., Tramontano E., Tabarrini O., Molecules 2020, 25, 1183. 14. doi: 10.3390/molecules25051183
  9. Brigance R.P., Meng W., Fura A., Harrity T., Wang A., Zahler R., Kirby M. S., Hamann L. G., Bioorg. Med. Chem. Lett. 2010, 20, 4395–4398. 16. doi: 10.1016/j.bmcl.2010.06.063
  10. Pinheiro S., Pinheiro E.M.C., Muri E.M.F., Pessôa J.C., Cadorini M.A., Greco S., J. Med. Chem. Res. 2020, 29, 1751–1776. doi: 10.1007/s00044-020-02609-1
  11. Hu M., Liu X., Dong F., Xu J., Li S., Xu H., Zheng Y., Food Chem. 2015, 175, 395–400. 20. doi: 10.1016/j.foodchem.2014.11.158
  12. Zhu X., Zhang M., Liu J., Ge J., Yang G., J. Agric. Food. Chem. 2015, 63, 3377–3386. doi: 10.1021/acs.jafc.5b00228
  13. Tétard-Jones C., Edwards R., Pest. Manage. Sci. 2016, 72, 203–209. 24. doi: 10.1002/ps.4147
  14. Wu J., Cheng Y., Lan J., Wu D., Qian S., Yan L., He Z., Li X., Wang K., Zou B., You J., J. Am. Chem. Soc. 2016, 138, 12803–12812. doi: 10.1021/jacs.6b03890
  15. Su R., Zhao Y., Yang F., Duan L., Lan J., Bin Z., You J., Sci. Bull. 2021, 66, 441–448. doi: 10.1016/j.scib.2020.08.023
  16. Salas J.M., Angustias Romero M., Purificación Sánchez M., Quirós M., Coord. Chem. Rev. 1999, 193, 1119–1142. doi: 10.1016/S0010-8545(99)00004-1
  17. Łakomska I., Fandzloch M., Coord. Chem. Rev. 2016, 327–328, 221–241. doi: 10.1016/j.ccr.2016.04.014
  18. Pyatakov D.A., Sokolov A.N., Astakhov A.V., Chernenko A.Y., Fakhrutdinov A.N., Rybakov V.B., Chernyshev V.V., Chernyshev V.M., J. Org. Chem. 2015, 80, 10694–10709. doi: 10.1021/acs.joc.5b01908
  19. Zhang M., Cheng R., Lan J., Zhang H., Yan L., Pu X., Huang Z., Wu D., You J., Org. Lett. 2019, 21, 4058–4062. doi: 10.1021/acs.orglett.9b01238
  20. Wencel-Delord J., Glorius F., Nat. Chem. 2013, 5, p. 369–375. doi: 10.1038/nchem.1607.
  21. Guillemard L., Kaplaneris N., Ackermann L., Johansson M. J., Nat. Rev. Chem. 2021, 5, 522–545. doi: 10.1038/s41570-021-00300-6
  22. Josephitis C.M., Nguyen H.M.H., McNally A., Chem. Rev. 2023, 123, 7655–7691. doi: 10.1021/acs.chemrev.2c00881
  23. Fischer G., Chapter One – Recent advances in 1,2,4-triazolo[1,5-a]pyrimidine chemistry. In Advances in Heterocyclic Chemistry; Academic Press, 2019, 128, 1–101. doi: 10.1016/bs.aihch.2018.10.002
  24. Kaushik P., Kumar R., Khokhar S., Dhiman S., Kamal R., ChemistrySelect 2023, 8, e202301534. doi: 10.1002/slct.202301534
  25. Khazipov O.V., Shepelenko K.E., Pasyukov D.V., Chesnokov V.V., Soliev S.B., Chernyshev V.M., Ananikov V.P., Org. Chem. Front. 2021, 8, 2515–2524. doi: 10.1039/D1QO00309G
  26. Rasputin N.A., Demina N.S., Irgashev R.A., Rusinov G.L., Chupakhin O.N., Charushin V.N., Tetrahedron 2017, 73, 5500–5508. doi: 10.1016/j.tet.2017.07.042
  27. Rasputin N.A., Demina N.S., Irgashev R.A., Shchepochkin A.V., Rusinov G.L., Chupakhin O.N., Charushin V.N., ARKIVOC 2020, 2020, 330–343. doi: 10.24820/ark.5550190.p011.247
  28. Balkenhohl M., Jangra H., Makarov I. S., Yang S.-M., Zipse H., Knochel P., Angew. Chem. Int. Ed. 2020, 59, 4992–14999. doi: 10.1002/anie.202005372
  29. Nguyen T.V.Q., Poli L., Garrison A.T., Chem. Commun. 2022, 58, 827–830. doi: 10.1039/D1CC06337E
  30. Cheng Y., Wu Y., Tan G., You J., Angew. Chem. Int. Ed. 2016, 55, 12275–12279. 57. doi: 10.1002/anie.201606529
  31. Tan G., He S., Huang X., Liao X., Cheng Y., You J., Angew. Chem. Int. Ed. 2016, 55, 10414–10418. 59. doi: 10.1002/anie.201604580
  32. Nguyen T.V.Q., Chem. Eur. J. 2023, 29, e202301485. doi: 10.1002/chem.202301485
  33. Singh K.S., Catalysts 2019, 9, 173. doi: 10.3390/catal9020173
  34. Arockiam P.B., Bruneau C., Dixneuf P.H., Chem. Rev. 2012, 112, 5879–5918. 64. doi: 10.1021/cr300153j
  35. Simonetti M., Cannas D.M., Just-Baringo X., Vitorica-Yrezabal I.J., Larrosa I., Nat. Chem. 2018, 10, 724–731. doi: 10.1038/s41557-018-0062-3
  36. Ackermann L., Vicente R., Potukuchi H.K., Pirovano V., Org. Lett. 2010, 12, 5032–5035. doi: 10.1021/ol102187e
  37. Zha G.-F., Qin H.-L., Kantchev E.A.B., RSC Adv. 2016, 6, 30875–30885. doi: 10.1039/c6ra02742c
  38. Murali K., Machado L.A., Carvalho R.L., Pedrosa L.F., Mukherjee R., Da Silva Júnior E.N., Maiti D., Chem. Eur. J. 2021, 27, 12453–12508. doi: 10.1002/chem.202101004
  39. Shepelenko K.E., Nikolaeva K.A., Gnatiuk I.G., Garanzha O.G., Alexandrov A.A., Minyaev M.E., Chernyshev V.M., Mendeleev Commun. 2022, 32, 485–487. doi: 10.1016/j.mencom.2022.07.018
  40. Ackermann L., Chem. Rev. 2011, 111, 1315–1345. doi: 10.1021/cr100412j
  41. Dolzhenko A.V., Pastorin G., Dolzhenko A. V., Chui W. K., Tetrahedron Lett. 2009, 50, 2124–2128. 78. doi: 10.1016/j.tetlet.2009.02.172

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Scheme 1

Download (65KB)
3. Scheme 2

Download (207KB)
4. Figure. Schemes of key correlations in the 1H–1H NOESY spectra of compounds 2a and 2d (a), fragment of the 1H–1H NOESY spectrum of compound 2a (b)

Download (217KB)

Copyright (c) 2024 Russian Academy of Sciences