Synthesis and some transformations of new acetophenones with carbamate function

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Acylation of methyl- N -phenyl-, 2-(morpholin-4-yl)ethylphenyl-, 2-(pyridin-2-yl)ethylphenyl-carbamates with acetic anhydride in polyphosphoric acid at 50-55°C for 3 h proceeds in the para -position to the carbamate grouping to form the corresponding acetophenones. Acylation under similar conditions of methyl 2-(methoxyphenyl)carbamate occurs in the para -position to the methoxy group with the formation of methyl N -(5-acetyl-2-methoxyphenyl)carbamate. The interaction of para - and ortho -acetyl-substituted methyl- N -phenylcarbamate with N -bromosuccinimide, copper(II) acetate in the presence of dimethylformamide at 80°C and with chloro- and hydrobromic acids in the presence of DMSO in ethyl acetate at 30-33°C yielded methyl {4(2)-[(dimethylamino)(oxo)-acetyl]phenyl}- and N -[4(2)-(2-bromo-2-chloroacetyl)phenyl]-carbamates. Condensation of 2-morpholinoethyl [(pyridin-2-yl)ethyl] N -(4-acetylphenyl)carbamates with 4-methoxybenzaldehyde in the presence of a methanolic KOH solution gave the corresponding chalcones.

Sobre autores

A. Velikorodov

Astrakhan State University;Astrakhan State Medical University

Email: avelikorodov@mail.ru

E. Kutlalieva

Astrakhan State University;Astrakhan State Medical University

Email: avelikorodov@mail.ru

S. Nosachev

Astrakhan State University

Email: avelikorodov@mail.ru

E. Shustova

Astrakhan State Medical University

Email: avelikorodov@mail.ru

Bibliografia

  1. Великородов А.В., Кутлалиева Э.Н., Степкина Н.Н., Шустова Е.А., Поддубный О.Ю. ЖОрХ. 2020, 56, 1402-1409.
  2. Velikorodov A.V., Kutlalieva E.N., Stepkina N.N., Shustova E.A., Poddubnyi O.Yu. Russ. J. Org. Chem. 2020, 56, 1570-1575. doi: 10.1134/S1070428020090110
  3. Chebanov V.A., Desenko S.M., Gurley T.W. Azaheterocycles Based on α,β-Unsaturated Carbonyls. Berlin: Springer, 2008. doi: 10.1007/978-3-540-68367-4_1
  4. Великородов А.В., Ионова В.А., Темирбулатова С.И., Титова О.Л., Степкина Н.Н. ЖОрХ. 2013, 49, 1631-1637.
  5. Velikorodov A.V., Ionova V.A., Temirbulatova S.I., Titova O.L., Stepkina N.N. Russ. J. Org. Chem. 2013, 49, 1610-1616. doi: 10.1134/S1070428017010146
  6. Wei Y., Yan Y., Li X. Synlett. 2020, 31, 393-397. doi: 10.1055/s-0039-1691568
  7. Zhou Jin-Feng, Tang Dong-Min, Bian M. Synlett. 2020, 31, 1430-1434. doi: 10.1055/s-0040-1707169
  8. Magen S., Oren J., Fuchs B. Tetrahedron Lett. 1984, 25, 3369-3372. doi: 10.1016/S0040-4039(01)81387-3
  9. Erian A.W., Sherif S.M., Gaber H.M. Molecules. 2003, 8, 793-865. doi: 10.3390/81100793
  10. Turan-Zitouni G., Chevalle, P., Kilic F.S., Erol K. Eur. J. Med. Chem. 2000, 35, 635-641. doi: 10.1016/s0223-5234(00)00152-5
  11. Joachim R. Tetrahedron. 2000, 56, 3161-3165. doi: 10.1016/S0040-4020(00)00190-3
  12. Великородов А.В., Зухайраева А.С., Чабакова А.К., Ковалев В.Б. ЖОрХ. 2018, 54, 1497-1502.
  13. Velikorodov A.V., Zukhairaeva A.S., Chabakova A.K., Kovalev V.B. Russ. J. Org. Chem. 2018, 54, 1509-1514. doi: 10.1134/S1070428018100123
  14. Великородов А.В., Шустова Е.А., Носачев С.Б. ЖОрХ. 2017, 53, 1821-1823.
  15. Velikorodov A.V., Shustova E.A., Nosachev S.B. Russ. J. Org. Chem. 2017, 53, 1857-1859. doi: 10.1134/S1070428017120120
  16. Великородов А.В., Шустова Е.А. ЖОрХ. 2017, 53, 86-89.
  17. Velikorodov A.V., Shustova E.A. Russ. J. Org. Chem. 2017, 53, 82-85. doi: 10.1134/S1070428017010146
  18. Kawabata T., Mizugaki T., Ebitani K., Kaneda K. Tetrahedron Lett. 2001, 42, 8329-8332. doi: 10.1016/S0040-4039(01)01788-9
  19. Paul S., Gupta V., Gupta R., Loupy A. Tetrahedron Lett. 2003, 44, 439-442. doi: 10.1016/S0040-4039(02)02601-1
  20. John R.P., Sreekanth A., Kurup M.R.P., Usman A., Ibrahim A.R., Fun H.K. Spect. Chim. Acta: A. 2003, 59, 1349-1358. doi: 10.1016/S1386-1425(02)00332-3
  21. Woodard C.L., Li Z., Kathcart A.K., Terrell J., Gerena L., Lopez-Sanchez M., Kyle D.E., Bhattacharjee A.K., Nichols D.A., Ellis W., Prigge S.T., Geyer J.A., Waters N.C. J. Med. Chem. 2003, 46, 3877-3882. doi: 10.1021/jm0300983
  22. Chang H.T., Sharpless K.B. Tetrahedron Lett. 1996, 37, 3219-3222. doi: 10.1016/0040-4039(96)00534-5
  23. Huang J., Corey E.J. Org. Lett. 2003, 5, 3455-3458. doi: 10.1021/ol035192s
  24. Ma Y., Liu H., Chen L., Cui X., Zhu J., Deng J. Org. Lett. 2003, 5, 2103-2106. doi: 10.1021/ol0345125
  25. Geronikaki A., Babaev E., Dearden J., Dehaen W., Filimonov D., Galaeva I., Krajneva V., Lagunin A., Macaev F., Molodavkin G., Poroikov V., Pogrebnoi S., Saloutin V., Stepanchikova A., Stingaci E., Voronina T., Vlad L. Bioorg. Med. Chem. 2004, 12, 6559-6568. doi: 10.1016/j.bmc.2004.09.016
  26. Kȩdziora K., Bisogno F.R., Lavandera I., Gotor-Fernández V., Montejo-Bernardo J., García-Granda S., Kroutil W., Gotor V. ChemCatChem. 2014, 6, 1066-1072. doi: 10.1002/cctc.201300834
  27. Ashikari Y., Nokami T., Yoshida J.-I. Org. Lett. 2012, 14, 938-941. doi: 10.1021/ol203467v
  28. Witek S., Bielawski J., Bielawska A. J. Prakt. Chem. 1979, 321, 804-812. doi: 10.1002/prac.19793210512

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2023