Interaction of Methylenecycloalkanes with BF3·THF Catalyzed by 2TiCl2
- 作者: Tulyabaeva L.I.1, Salakhutdinov R.R.1, Tulyabaev A.R.1, Tyumkina T.V.1, Abdullin M.F.2
-
隶属关系:
- Institute of Petrochemistry and Catalysis, Ufa Federal Research Centre, Russian Academy of Sciences
- Ufa Institute of Chemistry, Ufa Federal Research Centre, Russian Academy of Sciences
- 期: 卷 59, 编号 9 (2023)
- 页面: 1158-1167
- 栏目: Articles
- URL: https://aspvestnik.ru/0514-7492/article/view/666188
- DOI: https://doi.org/10.31857/S0514749223080069
- EDN: https://elibrary.ru/XUFOQR
- ID: 666188
如何引用文章
详细
The Cp2TiCl2-catalyzed interaction of methylenecycloalkanes with BF3·THF in tetrahydrofuran was carried out for the first time with the formation of target 1-fluoro-1-boraspirocarbocycles and also isomerization products of a starting monomer (1-methylcycloalk-1-enes). The structure of reaction products was elucidated using one(1H, 13C Dept, 11B, 19F) and two-dimensional (COSY, HSQC, HMBC) NMR spectroscopy, mass spectrometry combined with quantum-chemical calculations of 13C NMR chemical shifts.
作者简介
L. Tulyabaeva
Institute of Petrochemistry and Catalysis, Ufa Federal Research Centre, Russian Academy of Sciences
Email: khusainova_ink@mail.ru
R. Salakhutdinov
Institute of Petrochemistry and Catalysis, Ufa Federal Research Centre, Russian Academy of Sciences
A. Tulyabaev
Institute of Petrochemistry and Catalysis, Ufa Federal Research Centre, Russian Academy of Sciences
T. Tyumkina
Institute of Petrochemistry and Catalysis, Ufa Federal Research Centre, Russian Academy of Sciences
M. Abdullin
Ufa Institute of Chemistry, Ufa Federal Research Centre, Russian Academy of Sciences
参考
- Джемилев У.М., Ибрагимов А.Г. Усп. хим. 2000, 69, 134-149.
- Dzhemilev U.M., Ibragimov A.G. Russ. Chem. Rev. 2000, 69, 121-135. doi: 10.1070/RC2000v069n02ABEH000519
- Parenty A, Campagne J.-M. Tetrahedron Lett. 2002, 43, 1231-1233. doi: 10.1016/s0040-4039(01)02402-9
- Джемилев У.М., Ибрагимов А.Г. Усп. хим. 2005, 74, 886-903.
- Dzhemilev U.M., Ibragimov A.G. Russ. Chem. Rev. 2005, 74, 807-823. doi: 10.1070/RC2005v074n09ABEH001171
- Davis-Gilbert Z.W., Tonks I.A. Dalton Trans. 2017, 46, 11522-11528. doi: 10.1039/c7dt02319g
- Beaumier E.P., Pearce A.J., See X.Y., Tonks I.A. Nat. Rev. Chem. 2018, 3, 16-34. doi: 10.1038/s41570-018-0059-x
- Zhang Y., Liao S., Xu Y., Chen S. J. Organomet. Chem. 1990, 382, 69-76. doi: 10.1016/0022-328x(90)85216-l
- Kulinkovich O.G., de Meijere A. Chem. Rev. 2000, 100, 2789-2834. doi: 10.1021/cr980046z
- Ozerov O.V., Patrick B.O., Ladipo F.T. J. Am. Chem. Soc. 2000, 122, 6423-6431. doi: 10.1021/ja994543o
- Blanco-Urgoiti J., Añorbe L., Pérez-Serrano L., Domínguez G., Pérez-Castells J. Chem. Soc. Rev. 2004, 33, 32-42. doi: 10.1039/b300976a
- Gansäuer A., Hildebrandt S., Michelmann A., Dahmen T., von Laufenberg D., Kube C., Fianu G.D., Flowers R.A. Angew. Chem. Int. Ed. 2015, 54, 7003-7006. doi: 10.1002/anie
- Pohlki F., Doye S. Angew. Chem. Int. Ed. 2001, 40, 2305-2308. doi: 10.1002/1521-3773(20010618)40:12<2305::aid-anie2305>3.0.co;2-7
- Yamamoto A. Organotransition Metal Chemistry. New York: Wiley. 1986, 372-374.
- Isagawa K., Tatsumi K., Kosugi H., Otsuji Yo. Chem. Lett. 1977, 1017-1120. doi: 10.1246/cl.1977.1017
- Manßen M., Schafer L.L. Chem. Soc. Rev. 2020, 49, 6947- 6994. doi: 10.1039/d0cs00229a
- Ji L., Griesbeck S., Marder T.B. Chem. Sci. 2017, 8, 846-863. doi: 10.1039/c6sc04245g
- Тевяшова А.Н., Чудинов М.В. Усп. хим. 2021, 90, 451-487.
- Tevyashova A.N., Chudinov M.V. Russ. Chem. Rev. 2021, 90, 451-487. doi: 10.1070/RCR4977
- Lesnikowski Z.J. Expert Opin. Drug Discov. 2016, 11, 569-578. doi: 10.1080/17460441.2016.1174687
- Silva M.P., Saraiva L., Pinto M., Sousa M.E. Molecules. 2020, 25, 4323. doi: 10.3390/molecules25184323
- He X., Hartwig J. F. J. Am. Chem. Soc. 1996, 118, 1696-1702. doi: 10.1021/ja9516773
- Lee H.S., Isagawa K., Toyoda H., Otsuji Y. Chem. Lett. 1984, 13, 673-676. doi: 10.1246/cl.1984.673
- Motry D.H., Smith M.R.J. J. Am. Chem. Soc. 1995, 117, 6615-6616. doi: 10.1021/ja00129a035
- Khusainova L.I., Khafizova L.O., Ryazanov K.S., Tyumkina T.V., Dzhemilev U.M. J. Organomet. Chem. 2019, 898, 120858. doi: 10.1016/j.jorganchem.2019.07.009
- Хусаинова Л.И., Хафизова Л.О., Тюмкина Т.В., Джемилев У.М. ЖОрХ. 2015, 51, 1551-1557.
- Khusainova L.I., Khafizova L.O., Tyumkina T.V., Dzhemilev U.M. Russ. J. Org. Chem. 2015, 51, 1517-1523. doi: 10.1134/S1070428015110019
- Хусаинова Л.И., Хафизова Л.О., Тюмкина Т.В., Джемилев У.М. ЖОХ. 2016, 86, 1046-1049.
- Khusainova L.I., Khafizova L.O., Tyumkina T.V., Dzhemilev U.M. Russ. J. Gen. Chem. 2016, 86, 1038-1041. doi: 10.1134/S1070363216060335
- Khusainova L.I., Khafizova L.O., Tyumkina T.V., Ryazanov K.S., Popodko N.R., Dzhemilev U.M. J. Organomet. Chem. 2018, 873, 73-77. doi: 10.1016/j.jorganchem.2018.08.005
- Khusainova L.I., Khafizova L.O., Tyumkina T.V., Ryazanov K.S., Dzhemilev U.M. J. Organomet. Chem. 2017, 832, 12-17. doi: 10.1016/j.jorganchem.2017.01.009
- Джемилев У.М., Хусаинова Л.И., Рязанов К.С., Хафизова Л.О. Изв. АН. Сер. хим. 2021, 70, 1851-1892.
- Dzhemilev U.M., Khusainova L.I., Ryazanov K.S., Khafizova L.O. Russ. Chem. Bull. 2021, 70, 1851-1892. doi: 10.1007/s11172-021-3292-2
- Khusainova L.I., Khafizova L.O., Tyumkina T.V., Salakhutdinov R.R.; Dzhemilev U.M. J. Organomet. Chem. 2021, 950, 121981. doi: 10.1016/j.jorganchem.2021.121981
- Wehrmann R., Klusik H., Berndt A. Angew. Chem. Int. Ed. 1984, 23, 369-370. doi: 10.1002/anie.198403691
- Klusik H., Berndt A. Angew. Chem. Int. Ed. 1983, 22, 877-878. doi: 10.1002/anie.198308771
- Pues C., Baum G., Massa W., Berndt A. Z. Naturforsch. B. 1988, 43, 275-279. doi: 10.1515/znb-1988-0307
- Glaser B., Mayer E.P., Nöth H., Rattay W., Wietelmann U. Z. Naturforsch. B. 1988, 43, 449-456. doi: 10.1515/znb-1988-0411
- Falck J.R., Bondlela M., Venkataraman S.K., Srinivas D. J. Org.Chem. 2001, 66, 7148-7150. doi: 10.1021/jo015838z
- Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Petersson G.A., Nakatsuji H., Li X., Caricato M., Marenich A., Bloino J., Janesko B.G., Gomperts R., Mennucci B., Hratchian H.P., Ortiz J.V., Izmaylov A.F., Sonnenberg J.L., Williams-Young D., Ding F., Lipparini F., Egidi F., Goings J., Peng B., Petrone A., Henderson T., Ranasinghe D., Zakrzewski V.G., Gao J., Rega N., Zheng G., Liang W., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Throssell K., Montgomery J.A., Jr., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Keith T., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Millam J.M., Klene M., Adamo C., Cammi R., Ochterski J.W., Martin R.L., Morokuma K., Farkas O., Foresman J.B., Fox D.J. Gaussian 09,Revision A.02. Gaussian, Inc., Wallingford CT, 2016.
- Adam W., Stegmann V.R. J. Am. Chem. Soc. 2002, 124, 3600-3607. doi: 10.1021/ja017017h
- Shea K.J., Kim, J.S. J. Am. Chem. Soc. 1992, 114, 3044-3051. doi: 10.1021/ja00034a042
- Fitjer L., Quabeck U. Synth. Commun. 1985, 15, 855-864. doi: 10.1080/00397918508063883
- Wittig G., Schoellkopf U. Org. Synth., Coll. 1960, 40, 66. doi: 10.15227/orgsyn.040.0066
- Barluenga J., Fernandez-Simon J.L., Concellon J.M., Yus M. J. Chem. Soc. Perkin Trans. 1. 1988, 1, 3339-3343. doi: 10.1039/p19880003339
- Lebel H., Davi M., Díez-González S., Nolan S.P. J. Org. Chem. 2007, 72, 144-149. doi: 10.1021/jo061781a
- Xin D., Sader C.A., Chaudhary O., Jones P.-J., Wagner K., Tautermann C.S., Yang Z., Busacca C.A., Saraceno R., Fandrick K.R., Gonnella N.C., Horspool K., Hansen G., Senanayake C.H. J. Org. Chem. 2017, 82, 5135-5145. doi: 10.1021/acs.joc.7b00321
- Wrackmeyer B. Annu. Rep. NMR Spectrosc. 1988, 20, 61-203. doi: 10.1016/s0066-4103(08)60170-2
补充文件
