Interaction of Methylenecycloalkanes with BF3·THF Catalyzed by 2TiCl2
- Authors: Tulyabaeva L.I.1, Salakhutdinov R.R.1, Tulyabaev A.R.1, Tyumkina T.V.1, Abdullin M.F.2
-
Affiliations:
- Institute of Petrochemistry and Catalysis, Ufa Federal Research Centre, Russian Academy of Sciences
- Ufa Institute of Chemistry, Ufa Federal Research Centre, Russian Academy of Sciences
- Issue: Vol 59, No 9 (2023)
- Pages: 1158-1167
- Section: Articles
- URL: https://aspvestnik.ru/0514-7492/article/view/666188
- DOI: https://doi.org/10.31857/S0514749223080069
- EDN: https://elibrary.ru/XUFOQR
- ID: 666188
Cite item
Abstract
The Cp2TiCl2-catalyzed interaction of methylenecycloalkanes with BF3·THF in tetrahydrofuran was carried out for the first time with the formation of target 1-fluoro-1-boraspirocarbocycles and also isomerization products of a starting monomer (1-methylcycloalk-1-enes). The structure of reaction products was elucidated using one(1H, 13C Dept, 11B, 19F) and two-dimensional (COSY, HSQC, HMBC) NMR spectroscopy, mass spectrometry combined with quantum-chemical calculations of 13C NMR chemical shifts.
About the authors
L. I. Tulyabaeva
Institute of Petrochemistry and Catalysis, Ufa Federal Research Centre, Russian Academy of Sciences
Email: khusainova_ink@mail.ru
R. R. Salakhutdinov
Institute of Petrochemistry and Catalysis, Ufa Federal Research Centre, Russian Academy of Sciences
A. R. Tulyabaev
Institute of Petrochemistry and Catalysis, Ufa Federal Research Centre, Russian Academy of Sciences
T. V. Tyumkina
Institute of Petrochemistry and Catalysis, Ufa Federal Research Centre, Russian Academy of Sciences
M. F. Abdullin
Ufa Institute of Chemistry, Ufa Federal Research Centre, Russian Academy of Sciences
References
- Джемилев У.М., Ибрагимов А.Г. Усп. хим. 2000, 69, 134-149.
- Dzhemilev U.M., Ibragimov A.G. Russ. Chem. Rev. 2000, 69, 121-135. doi: 10.1070/RC2000v069n02ABEH000519
- Parenty A, Campagne J.-M. Tetrahedron Lett. 2002, 43, 1231-1233. doi: 10.1016/s0040-4039(01)02402-9
- Джемилев У.М., Ибрагимов А.Г. Усп. хим. 2005, 74, 886-903.
- Dzhemilev U.M., Ibragimov A.G. Russ. Chem. Rev. 2005, 74, 807-823. doi: 10.1070/RC2005v074n09ABEH001171
- Davis-Gilbert Z.W., Tonks I.A. Dalton Trans. 2017, 46, 11522-11528. doi: 10.1039/c7dt02319g
- Beaumier E.P., Pearce A.J., See X.Y., Tonks I.A. Nat. Rev. Chem. 2018, 3, 16-34. doi: 10.1038/s41570-018-0059-x
- Zhang Y., Liao S., Xu Y., Chen S. J. Organomet. Chem. 1990, 382, 69-76. doi: 10.1016/0022-328x(90)85216-l
- Kulinkovich O.G., de Meijere A. Chem. Rev. 2000, 100, 2789-2834. doi: 10.1021/cr980046z
- Ozerov O.V., Patrick B.O., Ladipo F.T. J. Am. Chem. Soc. 2000, 122, 6423-6431. doi: 10.1021/ja994543o
- Blanco-Urgoiti J., Añorbe L., Pérez-Serrano L., Domínguez G., Pérez-Castells J. Chem. Soc. Rev. 2004, 33, 32-42. doi: 10.1039/b300976a
- Gansäuer A., Hildebrandt S., Michelmann A., Dahmen T., von Laufenberg D., Kube C., Fianu G.D., Flowers R.A. Angew. Chem. Int. Ed. 2015, 54, 7003-7006. doi: 10.1002/anie
- Pohlki F., Doye S. Angew. Chem. Int. Ed. 2001, 40, 2305-2308. doi: 10.1002/1521-3773(20010618)40:12<2305::aid-anie2305>3.0.co;2-7
- Yamamoto A. Organotransition Metal Chemistry. New York: Wiley. 1986, 372-374.
- Isagawa K., Tatsumi K., Kosugi H., Otsuji Yo. Chem. Lett. 1977, 1017-1120. doi: 10.1246/cl.1977.1017
- Manßen M., Schafer L.L. Chem. Soc. Rev. 2020, 49, 6947- 6994. doi: 10.1039/d0cs00229a
- Ji L., Griesbeck S., Marder T.B. Chem. Sci. 2017, 8, 846-863. doi: 10.1039/c6sc04245g
- Тевяшова А.Н., Чудинов М.В. Усп. хим. 2021, 90, 451-487.
- Tevyashova A.N., Chudinov M.V. Russ. Chem. Rev. 2021, 90, 451-487. doi: 10.1070/RCR4977
- Lesnikowski Z.J. Expert Opin. Drug Discov. 2016, 11, 569-578. doi: 10.1080/17460441.2016.1174687
- Silva M.P., Saraiva L., Pinto M., Sousa M.E. Molecules. 2020, 25, 4323. doi: 10.3390/molecules25184323
- He X., Hartwig J. F. J. Am. Chem. Soc. 1996, 118, 1696-1702. doi: 10.1021/ja9516773
- Lee H.S., Isagawa K., Toyoda H., Otsuji Y. Chem. Lett. 1984, 13, 673-676. doi: 10.1246/cl.1984.673
- Motry D.H., Smith M.R.J. J. Am. Chem. Soc. 1995, 117, 6615-6616. doi: 10.1021/ja00129a035
- Khusainova L.I., Khafizova L.O., Ryazanov K.S., Tyumkina T.V., Dzhemilev U.M. J. Organomet. Chem. 2019, 898, 120858. doi: 10.1016/j.jorganchem.2019.07.009
- Хусаинова Л.И., Хафизова Л.О., Тюмкина Т.В., Джемилев У.М. ЖОрХ. 2015, 51, 1551-1557.
- Khusainova L.I., Khafizova L.O., Tyumkina T.V., Dzhemilev U.M. Russ. J. Org. Chem. 2015, 51, 1517-1523. doi: 10.1134/S1070428015110019
- Хусаинова Л.И., Хафизова Л.О., Тюмкина Т.В., Джемилев У.М. ЖОХ. 2016, 86, 1046-1049.
- Khusainova L.I., Khafizova L.O., Tyumkina T.V., Dzhemilev U.M. Russ. J. Gen. Chem. 2016, 86, 1038-1041. doi: 10.1134/S1070363216060335
- Khusainova L.I., Khafizova L.O., Tyumkina T.V., Ryazanov K.S., Popodko N.R., Dzhemilev U.M. J. Organomet. Chem. 2018, 873, 73-77. doi: 10.1016/j.jorganchem.2018.08.005
- Khusainova L.I., Khafizova L.O., Tyumkina T.V., Ryazanov K.S., Dzhemilev U.M. J. Organomet. Chem. 2017, 832, 12-17. doi: 10.1016/j.jorganchem.2017.01.009
- Джемилев У.М., Хусаинова Л.И., Рязанов К.С., Хафизова Л.О. Изв. АН. Сер. хим. 2021, 70, 1851-1892.
- Dzhemilev U.M., Khusainova L.I., Ryazanov K.S., Khafizova L.O. Russ. Chem. Bull. 2021, 70, 1851-1892. doi: 10.1007/s11172-021-3292-2
- Khusainova L.I., Khafizova L.O., Tyumkina T.V., Salakhutdinov R.R.; Dzhemilev U.M. J. Organomet. Chem. 2021, 950, 121981. doi: 10.1016/j.jorganchem.2021.121981
- Wehrmann R., Klusik H., Berndt A. Angew. Chem. Int. Ed. 1984, 23, 369-370. doi: 10.1002/anie.198403691
- Klusik H., Berndt A. Angew. Chem. Int. Ed. 1983, 22, 877-878. doi: 10.1002/anie.198308771
- Pues C., Baum G., Massa W., Berndt A. Z. Naturforsch. B. 1988, 43, 275-279. doi: 10.1515/znb-1988-0307
- Glaser B., Mayer E.P., Nöth H., Rattay W., Wietelmann U. Z. Naturforsch. B. 1988, 43, 449-456. doi: 10.1515/znb-1988-0411
- Falck J.R., Bondlela M., Venkataraman S.K., Srinivas D. J. Org.Chem. 2001, 66, 7148-7150. doi: 10.1021/jo015838z
- Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Petersson G.A., Nakatsuji H., Li X., Caricato M., Marenich A., Bloino J., Janesko B.G., Gomperts R., Mennucci B., Hratchian H.P., Ortiz J.V., Izmaylov A.F., Sonnenberg J.L., Williams-Young D., Ding F., Lipparini F., Egidi F., Goings J., Peng B., Petrone A., Henderson T., Ranasinghe D., Zakrzewski V.G., Gao J., Rega N., Zheng G., Liang W., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Throssell K., Montgomery J.A., Jr., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Keith T., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Millam J.M., Klene M., Adamo C., Cammi R., Ochterski J.W., Martin R.L., Morokuma K., Farkas O., Foresman J.B., Fox D.J. Gaussian 09,Revision A.02. Gaussian, Inc., Wallingford CT, 2016.
- Adam W., Stegmann V.R. J. Am. Chem. Soc. 2002, 124, 3600-3607. doi: 10.1021/ja017017h
- Shea K.J., Kim, J.S. J. Am. Chem. Soc. 1992, 114, 3044-3051. doi: 10.1021/ja00034a042
- Fitjer L., Quabeck U. Synth. Commun. 1985, 15, 855-864. doi: 10.1080/00397918508063883
- Wittig G., Schoellkopf U. Org. Synth., Coll. 1960, 40, 66. doi: 10.15227/orgsyn.040.0066
- Barluenga J., Fernandez-Simon J.L., Concellon J.M., Yus M. J. Chem. Soc. Perkin Trans. 1. 1988, 1, 3339-3343. doi: 10.1039/p19880003339
- Lebel H., Davi M., Díez-González S., Nolan S.P. J. Org. Chem. 2007, 72, 144-149. doi: 10.1021/jo061781a
- Xin D., Sader C.A., Chaudhary O., Jones P.-J., Wagner K., Tautermann C.S., Yang Z., Busacca C.A., Saraceno R., Fandrick K.R., Gonnella N.C., Horspool K., Hansen G., Senanayake C.H. J. Org. Chem. 2017, 82, 5135-5145. doi: 10.1021/acs.joc.7b00321
- Wrackmeyer B. Annu. Rep. NMR Spectrosc. 1988, 20, 61-203. doi: 10.1016/s0066-4103(08)60170-2
Supplementary files
