Ruthenium-Catalyzed C(3)-H Alkylation of the Furan (Thiophene) Ring of 2-Furoyl- and Thiophene-2-carbonyl-1-methylimidazoles with Acrylic Acid Derivatives

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A method for the synthesis of 3-alkyl-2-furoyl- and thiophene-2-carbonyl-1-methylimidazoles by ruthenium-catalyzed selective C(3)-H alkylation of the furan (thiophene) ring 2-furoyl(thiophene-2-carbonyl)-1-methylimidazoles with esters, amides or nitrile of acrylic acid has been developed. The resulting compounds may be of interest as polyfunctional reagents or for the preparation of 3-(2-carboxyethyl)furan(thiophene)2-carboxylic acid derivatives.

作者简介

K. Shepelenko

Platov South-Russian State Polytechnic University (NPI)

编辑信件的主要联系方式.
Email: kon1990@bk.ru
ORCID iD: 0000-0002-7281-5095
俄罗斯联邦, Prosveschenya, 132, Novocherkassk, 346428

I. Gnatiuk

Platov South-Russian State Polytechnic University (NPI)

Email: kon1990@bk.ru
ORCID iD: 0009-0003-8772-6372
俄罗斯联邦, Prosveschenya, 132, Novocherkassk, 346428

V. Chernyshev

Platov South-Russian State Polytechnic University (NPI)

Email: chern13@yandex.ru
ORCID iD: 0000-0001-9182-8564
俄罗斯联邦, Prosveschenya, 132, Novocherkassk, 346428

参考

  1. Voigtlaender M., Schneider-Merck T., Trepel M., Small Molecules in Oncology, Martens, U. M., Ed., Springer International Publishing, Cham, 2018, 19–44.
  2. Strum W. B., JAMA, 1983, 250, 1894–1896. doi: 10.1001/jama.1983.03340140064032
  3. Duggan, L. Fenton M., Rathbone J., Dardennes R., El‐Dosoky A., Indran S., CDSR, 2005. doi: 10.1002/14651858.CD001359.pub2
  4. Turkoglu G., Cinar M. E., Ozturk T., Sulfur Chemistry, Jiang, X., Ed., Springer International Publishing, Cham, 2019, p. 79–123.
  5. Lin Y., Fan H., Li Y., Zhan X.J.A.m., 2012, 24, 3087–3106. doi: 10.1002/adma.201200721
  6. Feng Z., Cheng Z., Jin H., Lu P.J.J.o.M.C.C., 2022, 10, 4497–4520. doi: 10.1039/D1TC05255A
  7. Kashparova V.P., Chernysheva D.V., Klushin V.A., Andreeva V.E., Kravchenko O.A., Smirnova N.V., Russ. Chem. Rev., 2021, 90, 750. doi: 10.1070/RCR5018
  8. Karlinskii B.Y., Ananikov V.P., Chemical Society Reviews, 2023. doi: 10.1039/D2CS00773H
  9. Zhu J., Yin G., ACS Catal., 2021, 11, 10058–10083. doi: 10.1021/acscatal.1c01989
  10. Lavrentev I.V., Shepelenko K.E., Gnatiuk I.G., Aleksandrov A.A., Zhang Y., Chernyshev V.M., Mendeleev Commun., 2023, 33, 494–496. doi: 10.1016/j.mencom.2023.06.017
  11. Shepelenko K.E., Soliev S.B., Nikolaeva K.A., Minyaev M.E., Chernyshev V.M., Russ. Chem. Bull., 2023, 72, 1746–1752. doi: 10.1007/s11172-023-3956-1
  12. Li F., Li X., Gong T., Fu Y., ChemCatChem, 2019, 11, 5124–5130. doi: 10.1002/cctc.201901365
  13. Mandal A., Bera R., Baidya M., J. Org. Chem., 2021, 86, 62–73. doi: 10.1021/acs.joc.0c02215
  14. Forgione P., Brochu M.-C., St-Onge M., Thesen K.H., Bailey M.D., Bilodeau F., J. Am. Chem. Soc., 2006, 128, 11350–11351. doi: 10.1021/ja063511f
  15. Seregin I. V., Gevorgyan V., Chem. Soc. Rev., 2007, 36, 1173–1193. doi: 10.1039/B606984N
  16. Zhang Y., Szostak M., Chem. Eur. J., 2022, 28, e202104278. doi: 10.1002/chem.202104278
  17. Josephitis C.M., Nguyen H.M.H., McNally A., Chem. Rev., 2023, 123, 7655–7691. doi: 10.1021/acs.chemrev.2c00881
  18. Roger J., Gottumukkala A.L., Doucet H., ChemCatChem, 2010, 2, 20–40. doi: 10.1002/cctc.200900074
  19. Karlinskii B.Y., Ananikov V.P., ChemSusChem, 2021, 14, 558–568. doi: 10.1002/cssc.202002397
  20. Kommagalla Y., Mullapudi V.B., Francis F., Ramana C.V., Catal. Sci. Technol., 2015, 5, 114–117. doi: 10.1039/C4CY01268B
  21. Sala R., Kiala G., Veiros L.F., Broggini G., Poli G., Oble J., J. Org. Chem., 2022, 87, 4640–4648. doi: 10.1021/acs.joc.1c03044
  22. Pezzetta C., Veiros L.F., Oble J., Poli G., Chem. Eur. J., 2017, 23, 8385–8389. doi: 10.1002/chem.201701850
  23. Murai S., Kakiuchi F., Sekine S., Tanaka Y., Kamatani A., Sonoda M., Chatani N., Nature, 1993, 366, 529–531. doi: 10.1038/366529a0
  24. Martinez R., Simon M.-O., Chevalier R., Pautigny C., Genet J.-P., Darses S., J. Am. Chem. Soc., 2009, 131, 7887–7895. doi: 10.1021/ja9017489
  25. Kommagalla Y., Srinivas K., Ramana C.V., Chem. Eur. J., 2014, 20, 7884–7889. doi: 10.1002/chem.201400401
  26. Shambhavi C.N., Jeganmohan M., Org. Lett., 2021, 23, 4849–4854. doi: 10.1021/acs.orglett.1c01575
  27. Wang C.-a., Chatani N.J.C.L., 2021, 50, 589–592. doi: 10.1246/cl.200886
  28. Zhang R., Guan Y., Tian B., Liu Y., Chen Z., Hu J., Appl. Organomet. Chem., 2023, 37, e7060. doi: 10.1002/aoc.7060
  29. Hoshimoto Y., Asada T., Hazra S., Kinoshita T., Sombut P., Kumar R., Ohashi M., Ogoshi S., Angew. Chem. Int. Ed., 2016, 55, 16075–16079. doi: 10.1002/anie.201609710
  30. Karthik S., Muthuvel K., Gandhi T., J. Org. Chem., 2019, 84, 738–751. doi: 10.1021/acs.joc.8b02567
  31. Ohta S., Hayakawa S., Moriwaki H., Tsuboi S., Okamoto M.J.H., 1985, 23, 1759–1764. doi: 10.1002/CHIN.198546151
  32. Shepelenko K.E., Gnatiuk I.G., Lavrentev I.V., Minyaev M.E., Chernyshev V.M., Ananikov V.P., Synthesis, 2024, 56, 3063–3073. doi: 10.1055/s-0043-1775383
  33. Wang C.-a., Chatani N., Org. Chem. Front., 2020, 7, 2955–2959. doi: 10.1039/D0QO00920B
  34. Mahato S.K., Chatani N., ACS Catal., 2020, 10, 5173–5178. doi: 10.1021/acscatal.0c01189

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2024