Activation of Phenyl-N-(triflyl)imino-λ3-iodane by Metal Salts in Reactions with Alkenes

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The reactions of alkenes with phenyl-N-(triflyl)imino-λ3-iodane PhI=NTf 1 under different conditions were studied. Optimization of the reaction conditions of 1 with styrenes in the presence of copper (I) chloride leads to aziridine and bis(triflamidation) products in different ratios. The use, in the same reaction, of silver nitrate as a catalyzing additive leads to 1-phenyl-2-(triflamido)ethyl nitrate. Involvement of camphene as substrate and varying the catalyzing additive under oxidizing conditions can lead to isomeric acetamidines. The possible biological activity for the obtained compounds was evaluated.

Texto integral

Acesso é fechado

Sobre autores

A. Ganin

A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences

Autor responsável pela correspondência
Email: ganin@irioch.irk.ru
ORCID ID: 0000-0003-1626-795X
Rússia, ul. Favorskogo, 1, Irkutsk, 664033

I. Garagan

A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences

Email: ganin@irioch.irk.ru
ORCID ID: 0000-0003-3024-798X
Rússia, ul. Favorskogo, 1, Irkutsk, 664033

M. Sobyanina

A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences

Email: ganin@irioch.irk.ru
ORCID ID: 0000-0002-0361-0897
Rússia, ul. Favorskogo, 1, Irkutsk, 664033

M. Moskalik

A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences

Email: ganin@irioch.irk.ru
Rússia, ul. Favorskogo, 1, Irkutsk, 664033

Bibliografia

  1. Minakata S., Morino Y., Oderaotoshi Y., Komatsu M., Chem. Commun. 2006, том?. 3337–3339. doi: 10.1039/B606499J
  2. Gao P., Wei Y., Heterocycl. Commun. 2013, 19, 113–119. doi: 10.1515/hc-2012-0179
  3. Minakata S., Acc. Chem. Res. 2009, 42, 1172–1182. doi: 10.1021/ar900059r
  4. Yoshimura A., Nemykin V.N., Zhdankin V.V. Chem. Eur. J., 2011, 17, 10538–10541. doi: 10.1002/chem.201102265
  5. Kobayashi Y., Masakado S., Takemoto Y. Angew. Chem. Int. Ed. 2018, 57, 693–697. doi: 10.1002/anie.201710277
  6. Conry R.R., Tipton A.A., Striejewske W.S., Erkizia E., Malwitz M.A., Caffaratti A., Natkin J.A. Organometallics. 2004, 23, 5210–5218. doi: 10.1021/om040098g
  7. Gopalan G., Dhanya B.P., Saranya J., Reshmitha T.R., Baiju T.V., Meenu M.T., Nair M.S., Nisha P., Radhakrishnan K.V. Eur. J. Org. Chem. 2017, том?. 3072–3077. doi: 10.1002/ejoc.201700410
  8. Wu X.-L., Xia J.-J., Wang G.-W. Org. Biomol. Chem. 2008, 6, 548–553. doi: 10.1039/B717333D
  9. Wu X.-L., Wang G.-W. Tetrahedron. 2009, 65, 8802–8807. doi: 10.1016/j.tet.2009.08.069
  10. Morino Y., Hidaka I., Oderaotoshi Y., Komatsu M., Minakata S. Tetrahedron. 2006, 62, 12247–12251. doi: 10.1016/j.tet.2006.10.003
  11. Cai Y., Liu X., Li J., Chen W., Wang W., Lin L., Feng X. Chem. Eur. J. 2011, 17, 14916–14921. doi: 10.1002/chem.201102453
  12. Knight J.G., Muldowney M.P. J. Synlett. 1995, 9, 949–951. doi: 10.1055/s-1995-5128
  13. Wu Q., Hu J., Ren X., Zhou J. Chem. Eur. J. 2011, 17, 11553–11558. doi: 10.1002/chem.201101630
  14. Shainyan B.A., Moskalik M.Y., Starke I., Schilde U., Tetrahedron. 2010, 66, 8383–8386. doi: 10.1016/j.tet.2010.08.070
  15. Moskalik M.Yu., Shainyan B.A., Ushakov I.A., Sterkhova I.V., Astakhova V.V. Tetrahedron. 2020, 76, 131018. doi: 10.1016/j.tet.2020.131018
  16. Ganin A.S., Moskalik M.Y., Garagan I.A., Astakhova V.V., Shainyan B.A., Molecules. 2022, 27, 6910. doi: 10.3390/molecules27206910
  17. Evans D.A., Woerpel K.A., Hinman M.M., Faul M.M., J. Am. Chem. Soc. 1991, 113, 726–728. doi: 10.1021/ja00002a080
  18. Evans D.A., Faul M.M., Bilodeau M.T., J. Org. Chem. 1991, 56, 6744–6746. doi: 10.1021/jo00024a008
  19. Han H., Park S.B., Kim S.K., Chang S., J. Org. Chem. 2008, 73, 2862–2870. doi: 10.1021/jo800134j
  20. Cui Y., He C., J. Am. Chem. Soc. 2003, 125, 16202–16203. doi: 10.1021/ja038668b
  21. Baba, T., Takahashi, S., Kambara, Y., Yoshimura, A., Nemykin, V.N., Zhdankin, V.V., Saito, A., Adv. Synth. Cat. 2017, 359, 3860–3864. doi: 10.1002/adsc.201700934
  22. Sunagawa S., Morisaki F., Baba T., Tsubouchi A., Yoshimura A., Miyamoto K., Uchiyama M., Saito A.,Org. Lett. 2022, 24, 5230–5234. doi: 10.1021/acs.orglett.2c02264
  23. Ochiai M., Kaneaki T., Tada N., Miyamoto K., Chuman H., Shiro M., Hayashi S., Nakanishi W., J. Am. Chem. Soc. 2007, 129, 12938–12939. doi: 10.1021/ja075811i
  24. Hoque M.M., Miyamoto K., Tada N., Shiro M., Ochiai M., Org. Lett. 2011, 13, 5428–5431. doi: 10.1021/ol201868n
  25. Shainyan B.A., Moskalik M.Y., Astakhova V.V., Russ. J. Org. Chem. 2012, 48, 918–923. doi: 10.1134/S1070428012070056
  26. Moskalik M.Y., Shainyan B.A., Schilde U., Russ. J. Org. Chem. 2011, 47, 1271–1277. doi: 10.1134/S1070428011090016
  27. Moskalik M.Y., Garagan I.A., Astakhova V.V., Sterkhova I.V., Shainyan B.A., Tetrahedron. 2021, 88, 132145. doi: 10.1016/j.tet.2021.132145
  28. Sokolova A.S., Putilova V.P., Yarovaya O.I., Zybkina A.V., Mordvinova E.D., Zaykovskaya A.V., Shcherbakov D.N., Orshanskaya I.R., Sinegubova E.O., Esaulkova I.L., Borisevich S.S., Bormotov N.I., Shishkina L.N., Zarubaev V.V., Pyankov O.V., Maksyutov R.A., Salakhutdinov N.F. Molecules. 2021, 26, 2235. doi: 10.3390/molecules26082235
  29. Benelli G., Govindarajan M., Rajeswary M., Vaseeharan B., Alyahya S.A., Alharbi N.S., Kadaikunnan S., Khaled J.M., Maggi F. Ecotoxicol. Environ. Saf. 2018, 148, 781–786. doi: 10.1016/j.ecoenv.2017.11.044
  30. Garagan I.A., Moskalik M.Yu., Sterkhova I.V., Ganin A.S. Molbank. 2023, 2, M1645. doi: 10.3390/M1645
  31. Kiyokawa K., Kosaka T., Minakata S. Org. Lett. 2013, 15, 4858–4861. doi: 10.1021/ol402276f
  32. Moskalik M.Y., Ganin A.S., Shainyan B.A. Int. J. Mol. Sci. 2023, 24, 15947. doi: 10.3390/ijms242115947
  33. Filimonov D.A., Lagunin A.A., Gloriozova T.A., Rudik A.V., Druzhilovskii D.S., Pogodin P.V., Poroikov V.V. Chem. Heterocycl. Compd. 2014, 50, 444–457. doi: 10.1007/s10593-014-1496-1

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Scheme

Baixar (102KB)
3. Scheme 1

Baixar (70KB)
4. Scheme 2

Baixar (83KB)
5. Scheme 3

Baixar (42KB)
6. Scheme 4

Baixar (40KB)
7. Scheme 5

Baixar (40KB)
8. Scheme 6

Baixar (89KB)
9. Scheme 7

Baixar (59KB)
10. Scheme 8

Baixar (51KB)
11. Scheme 9

Baixar (82KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024